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NAMBU - GOLDSTONE  BOSONS: 
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LOW-ENERGY QCD with STRANGE QUARKS 

PART 1.

        . . .  realized as an EFFECTIVE  FIELD  THEORY 
with SU(3) octet of pseudoscalar Nambu-Goldstone bosons 
coupled to the baryon octet.

        Nature and structure of 

        Testing ground:  high-precision antikaon-nucleon threshold physics

Λ(1405) (B = 1, S = −1, J
P = 1/2−)

        Strange quarks are intermediate between “light” and “heavy”: 

    interplay between 
    spontaneous and explicit chiral symmetry breaking  

        Role of strangeness in dense baryonic matter ?

   new constraints from neutron stars   



CHIRAL SU(3) EFFECTIVE  FIELD  THEORY

Interacting systems of  NAMBU-GOLDSTONE BOSONS  
(pions, kaons) coupled to BARYONS

+ + ...

Low-Energy Expansion:  CHIRAL  PERTURBATION  THEORY
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Thus, it is useful to review also in detail effective coupled-channel field theories
based on the chiral Lagrangian.

The task to construct a systematic effective field theory for the meson-baryon
scattering processes in the resonance region is closely linked to the fundamental ques-
tion as to what is the ’nature’ of baryon resonances. The radical conjecture10), 5), 11), 12)

that meson and baryon resonances not belonging to the large-Nc ground states are
generated by coupled-channel dynamics lead to a series of works13), 14), 15), 17), 16), 18)

demonstrating the crucial importance of coupled-channel dynamics for resonance
physics in QCD. This conjecture was challenged by a phenomenological model,11)

which generated successfully non-strange s- and d-wave resonances by coupled-channel
dynamics describing a large body of pion and photon scattering data. Of course,
the idea to explain resonances in terms of coupled-channel dynamics is an old one
going back to the 60’s.19), 20), 21), 22), 23), 24) For a comprehensive discussion of this
issue we refer to.12) In recent works,13), 14) which will be reviewed here, it was shown
that chiral dynamics as implemented by the χ−BS(3) approach25), 10), 5), 12) provides
a parameter-free leading-order prediction for the existence of a wealth of strange and
non-strange s- and d-wave wave baryon resonances. A quantitative description of
the low-energy pion-, kaon and antikaon scattering data was achieved earlier within
the χ-BS(3) scheme upon incorporating chiral correction terms.5)

§2. Effective field theory of chiral coupled-channel dynamics

Consider for instance the rich world of antikaon-nucleon scattering illustrated in
Fig. 1. The figure clearly illustrates the complexity of the problem. The K̄N state
couples to various inelastic channel like πΣ and πΛ, but also to baryon resonances
below and above its threshold. The goal is to bring order into this world seeking a
description of it based on the symmetries of QCD. For instance, as will be detailed
below, the Λ(1405) and Λ(1520) resonances will be generated by coupled-channel
dynamics, whereas the Σ(1385) should be considered as a ’fundamental’ degree of
freedom. Like the nucleon and hyperon ground states the Σ(1385) enters as an
explicit field in the effective Lagrangian set up to describe the K̄N system.

The starting point to describe the meson-baryon scattering process is the chiral
SU(3) Lagrangian (see e.g.26), 5)). A systematic approximation scheme arises due to a
successful scale separation justifying the chiral power counting rules.27) The effective
field theory of the meson-baryon scattering processes is based on the assumption
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Fig. 1. The world of antikaon-nucleon scattering
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Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)
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CHIRAL SU(3) COUPLED CHANNELS DYNAMICS
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Note: ENERGY DEPENDENCE  characteristic of Nambu-Goldstone Bosons
Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)



CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Tij = Kij +

∑

n

Kin Gn Tnj

input from
chiral SU(3)

meson-baryon
effective Lagrangian

loop functions
(dim. regularization)

with subtraction constants 
encoding short distance dynamics

coupled channels:  

K−p, K̄0n, π
0Σ0

, π
+Σ−

, π
−Σ+

, π
0Λ, ηΛ, ηΣ0

, K+Ξ−

, K−Ξ0



(a) (b) (c) (d)

Figure 1: Feynman diagrams for the meson-baryon interactions in chiral perturbation theory.
(a) Weinberg-Tomozawa interaction, (b) s-channel Born term, (c) u-channel Born term, (d)
NLO interaction. The dots represent the O(p) vertices while the square denotes the O(p2)
vertex.

where qi, Mi and Ei are the momentum, the mass and the energy of the baryon in channel i, and χσi is
the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we
obtain the WT interaction

V WT
ij (W ) = −Cij

4f2
(2W − Mi − Mj)

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
. (15)

The Cij coefficients express the sign and the strength of the interaction for this channel. With the
SU(3) isoscalar factors [101, 102], it is given by [103, 104]

Cij =
∑

α

[6 − C2(α)]

(
8 8 α

Iī, Yī Ii, Yi I, Y

)(
8 8 α

Ij̄, Yj̄ Ij, Yj I, Y

)
, (16)

Y = Yī + Yi = Yj̄ + Yj, I = Iī + Ii = Ij̄ + Ij,

where α is the SU(3) representation of the meson-baryon system with C2(α) being its quadratic Casimir,
Ii and Yi are the isospin and hypercharge of the particle in channel i (i stands for the baryon and ī for
the meson). Explicit values of Cij for the S = −1 meson-baryon scattering can be found in Ref. [8]. It
is remarkable that the sign and the strength of the interaction (15) are fully determined by the group
theoretical factor Cij. This is because the low energy constant is absent in the Lagrangian (13), as it
is derived from the covariant derivative. In the language of current algebra, this is the consequence
of the vector current conservation (Weinberg-Tomozawa theorem) [74, 75]. Indeed, at threshold of
the πN → πN amplitude, Eq. (15) gives the scattering length (the relation of the T-matrix with the
nonrelativistic scattering amplitude is summarized in Appendix)

aπN→πN =






MN

4π(MN + mπ)

mπ

f 2
for I = 1/2

− MN

8π(MN + mπ)

mπ

f2
for I = 3/2

,

in accordance with the low energy theorem.
It is also remarkable that the phenomenological vector meson exchange potential [6] leads to the

same channel couplings with Cij when the flavor SU(3) symmetric coupling constants are used. In fact,
with the KSRF relation g2

V = m2
V /2f 2 [105, 106], the vector meson exchange potential reduces to the

contact interaction V ∝ Cij/f2 in the limit mV → ∞.
Another important feature of Eq. (15) is the dependence on the total energy W . This is a consequence

of the derivative coupling nature of the NG boson in the nonlinear realization. The energy dependence
is an important aspect for the discussion of the s-wave resonance state.
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CHIRAL SU(3) COUPLED CHANNELS DYNAMICS:

-  NLO hierarchy of driving terms  -

leading order  (Weinberg-Tomozawa) terms
input: physical pion and kaon decay constants

direct and crossed Born terms
input:  axial vector constants
D and F from hyperon beta decays

Now we turn to the baryons which are introduced as matter fields in the nonlinear realization [93, 94].
The octet baryon fields are collected as

B =





1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ



 ,

which transforms under g ∈ SU(3)R × SU(3)L as

B
g→ hBh†, B̄

g→ hB̄h†,

with h(g, u) ∈ SU(3)V . For baryons, the mass term M0Tr(B̄B) is chiral invariant even if the quark
masses are absent. The mass term brings the additional scale M0 in the theory, which causes problems
in the counting rule of Lagrangian and eventually in the systematic renormalization program. An
elegant method to avoid this difficulty is the heavy baryon chiral perturbation theory [95], where the
baryon fields are treated as heavy static fermions and the limit M0 → ∞ is taken. Here we follow
Refs. [96, 97, 98] to construct the relativistic chiral Lagrangian with keeping the common mass of the
octet baryons M0 finite.4 We define the following quantities

χ+ = uχ†u + u†χu†, χ− = uχ†u − u†χu†,

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u†},

Γµ =
1

2
{u†(∂µ − irµ)u + u(∂µ − ilµ)u†}.

The latter two quantities are related to the vector (Vµ) and axial vector (Aµ) currents as Aµ = −uµ/2

and Vµ = −iΓµ. These quantities are transformed as O
g→ hOh†, except for the chiral connection Γµ,

which transforms as
Γµ

g→ hΓµh
† + h∂µh

†.

Then the covariant derivatives for the octet baryon fields can be defined as

DµB = ∂µB + [Γµ, B].

The power counting rule for baryon fields is given by

B, B̄ : O(1), uµ, Γµ, (i /D − M0)B : O(p), χ± : O(p2).

With these counting rules, we can construct the most general effective Lagrangian for meson-baryon
system as

Leff(B, U) =
∞∑

n=1

[LM
2n(U) + LMB

n (B,U)],

where LMB
n (B, U) consists of bilinears of B field with the chiral order O(pn). In the lowest order O(p),

we have

LMB
1 = Tr

(
B̄(i /D − M0)B +

D

2
(B̄γµγ5{uµ, B}) +

F

2
(B̄γµγ5[uµ, B])

)
, (9)

4In this paper we utilize chiral perturbation theory for the meson-baryon scattering amplitude up to O(p2) where no
loop diagram appears. At O(p3), an appropriate renormalization procedure in the relativistic scheme [99, 100] must be
introduced.
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next-to-leading order (NLO)
input:  7 low-energy constants

gA = D + F = 1.26

O(p2)
where D and F are low energy constants related to the axial charge of the nucleon gA = D + F ∼
1.26, and M0 denotes the common mass of the octet baryons. Among many next-to-leading order
Lagrangians [96, 97, 98], the relevant terms to the meson-baryon scattering are

LMB
2 =bDTr

(
B̄{χ+, B}

)
+ bF Tr

(
B̄[χ+, B]

)
+ b0Tr(B̄B)Tr(χ+)

+ d1Tr
(
B̄{uµ, [uµ, B]}

)
+ d2Tr

(
B̄[uµ, [uµ, B]]

)

+ d3Tr(B̄uµ)Tr(uµB) + d4Tr(B̄B)Tr(uµuµ), (10)

where bi and di are the low energy constants. The first three terms are proportional to the χ field and
hence to the quark mass term. Thus, they are responsible for the mass splitting of baryons. Indeed,
Gell-Mann–Okubo mass formula follows from the tree level calculation with isospin symmetric masses
mu = md = m̂ "= ms.

3.3 Low energy meson-baryon interaction

Here we derive the s-wave low energy meson-baryon interaction up to the order O(p2) in momen-
tum space. In three flavor sector, several meson-baryon channels participate in the scattering, which
are labeled by the channel index i. The scattering amplitude from channel i to j can be written as
Vij(W, Ω,σi,σj) where W is the total energy of the meson-baryon system in the center-of-mass sys-
tem, Ω is the solid angle of the scattering, and σi is the spin of the baryon in channel i. Since we
are dealing with the scattering of the spinless NG boson off the spin 1/2 baryon target, the angular
dependence vanishes and the spin-flip amplitude does not contribute after the s-wave projection and
the spin summation. Thus, the s-wave interaction depends only on the total energy W as

Vij(W ) =
1

8π

∑

σ

∫
dΩ Vij(W, Ω, σ,σ). (11)

In chiral perturbation theory up to O(p2), there are four kinds of diagrams as shown in Fig. 1. For the
s-wave amplitude, the most important piece in the leading order terms is the Weinberg-Tomozawa (WT)
contact interaction (a). The covariant derivative term in Eq. (9) generates this term which can also be
derived from chiral low energy theorem. At order O(p), in addition to the WT term, there are s-channel
Born term (b) and u-channel term (c) which stem from the axial coupling terms in Eq. (9). Although
they are in the same chiral order with the WT term (a), the Born terms mainly contribute to the p-wave
interaction and the s-wave component is in the higher order of the nonrelativistic expansion [72]. With
the terms in the next-to-leading order Lagrangian (10), the diagram (d) gives the O(p2) interaction. In
summary, the tree-level meson-baryon amplitude is given by

Vij(W, Ω,σi,σj) = V WT
ij (W, Ω,σi,σj) + V s

ij(W, Ω,σi,σj) + V u
ij (W, Ω,σi,σj) + V NLO

ij (W, Ω,σi,σj), (12)

where V WT
ij , V s

ij, V u
ij and V NLO

ij terms correspond to the diagrams (a), (b), (c) and (d) in Fig. 1,
respectively. In the following we derive the amplitude Vij(W ) by calculating these diagrams.

Let us first consider the WT interaction (a). By expanding the covariant derivative term in Eq. (9)
in powers of meson field Φ, we obtain the meson-baryon four-point vertex

LWT =
1

4f 2
Tr

(
B̄iγµ[Φ∂µΦ − (∂µΦ)Φ, B]

)
. (13)

The tree-level amplitude by this term is given by

V WT
ij (W, Ω,σi,σj) = − Cij

4f 2

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

× (χσi)T

[
2W − Mi − Mj + (2W + Mi + Mj)

qi · qj + i(qi × qj) · σ
(Mi + Ei)(Mj + Ej)

]
χσj , (14)
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Pole structure in the complex energy plane
Resonance state ~ pole of the scattering amplitude

∼

Tij(
√

s) ∼ gigj√
s − MR + iΓR/2

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

Λ(1405) in meson-baryon scattering

T. Hyodo, D. Jido, arXiv:1104.4474

K̄NπΣ

The   TWO  POLES   scenario 

D. Jido et al. ,   Nucl. Phys.  A723 (2003) 205

dominantly
πΣ

dominantly
K̄N

T. Hyodo,  W. W. :  Phys. Rev.  C 77 (2008) 03524

|T|
[MeV

−1]

T. Hyodo,  D. Jido :  Prog. Part. Nucl. Phys.  67 (2012) 55
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Figure 4: Strong energy shift ∆E and width Γ of kaonic hydrogen for the three approaches.
The shaded areas represent different upper limits of the overall χ2/d.o.f. The 1σ confidence
region is bordered by the dashed line. See text for further details.
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Improved constraints on chiral SU(3) dynamics
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Abstract

A new improved study of K−-proton interactions near threshold is performed using coupled-
channels dynamics based on the next-to-leading order chiral SU(3) meson-baryon effective La-
grangian. Accurate constraints are now provided by new high-precision kaonic hydrogen mea-
surements. Together with threshold branching ratios and scattering data, these constraints per-
mit an updated analysis of the complex K̄N and πΣ coupled-channels amplitudes and an im-
proved determination of the K−p scattering length, including uncertainty estimates.

Introduction. Within the hierarchy of quark masses in QCD, the strange quark plays

an intermediate role between “light” and “heavy”. Hadronic systems with strange quarks

and, in particular, antikaon-nucleon interactions close to threshold are therefore suitable

testing grounds for investigating the interplay between spontaneous and explicit chiral

symmetry breaking in low-energy QCD.

Methods of effective field theory with coupled-channels, based on the chiral SU(3)R×SU(3)L

meson-baryon effective Lagrangian, have become a well established framework for dealing

with low-energy K̄N interactions [1,2] (see also Ref. [3] for a recent review). However,

previous applications of such approaches, combining information from earlier kaonic hy-

drogen measurements [4,5] and older K−p scattering data, were still subject to consid-

erable uncertainties. The theoretical studies [6–9] gave strong indications for a possible

inconsistency between the DEAR K−
hydrogen data [5] and the low-energy K−p elastic

scattering cross section. With the recent appearance of results from the SIDDHARTA

kaonic hydrogen measurements [10], a new level of accuracy has now been reached that

permits an improved analysis with updated constraints. The present work describes such

∗ Corresponding author at: Department of Physics, Tokyo Institute of Technology, Meguro 152-8551,
Japan

Email address: yikeda@riken.jp (Yoichi Ikeda).
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UPDATED ANALYSIS of K−p THRESHOLD PHYSICS

Chiral SU(3) coupled-channels dynamics 
Tomozawa-Weinberg   +  Born terms  +  NLO

Γ(K−p → π
+Σ−)

Γ(K−p → π
−Σ+)

Γ(K−p → π
+Σ−

, π
−Σ+)

Γ(K−p → all inelastic channels)

Γ(K−p → π
0Λ)

Γ(K−p → neutral states)

threshold branching ratios

2.36 ± 0.04

0.66 ± 0.01

0.19 ± 0.02

kaonic hydrogen shift & width theory (NLO) exp. 

∆E (eV)

Γ (eV)

best fit achieved with 

scattering length

541 ± 89 ± 22

283 ± 36 ± 6306

0.19

Re a(K−p) = −0.65 ± 0.10(fm)

591

0.66

Ima(K−p) = 0.81 ± 0.15

2.37

χ2/d.o.f. ! 0.9

(SIDDHARTA)

Y. Ikeda, T. Hyodo,  W.W.         Phys. Lett. B 706 (2011) 63        Nucl. Phys.  A (2012), in print



UPDATED ANALYSIS of K−p THRESHOLD PHYSICS

Non-trivial result: 
best NLO fit prefers physical values of decay constants:

Table 9: Summary of the subtraction constants and low-energy constants in BNW
convention[4] and meson decay constants in Model NLO3.

Channels Fock spaces ai(µ = 1GeV) × 10−3

1, 2 K̄N −2.3781
3 πΛ −16.569

4, 5, 6 πΣ 4.3498
7 ηΛ −0.0055866
8 ηΣ 1.9014

9, 10 KΞ 15.829
fK (MeV) 110.00
fη (MeV) 118.82

b0 (GeV−1) −0.047876
bD (GeV−1) 0.0047648
bF (GeV−1) 0.040119
d1 (GeV−1) 0.086461
d2 (GeV−1) −0.10623
d3 (GeV−1) 0.092194
d4 (GeV−1) 0.063991

Table 10: Results of fitting in NLO3. The experimental values of branching ratios are
taken from [9, 10].

Observables Theory Experiment
∆E (eV) 306 283 ± 42
Γ (eV) 591 541 ± 111

γ 2.36 2.36 ± 0.04
Rc 0.659 0.664 ± 0.011
Rn 0.192 0.189 ± 0.015

aK−p (fm) −0.81 + i0.87
Poles of the Λ(1405) (MeV) 1424.2 − i26.3, 1380.7 − i81.3

16

NLO parameters are non-negligible but small

Tomozawa-Weinberg terms dominant

Born terms significant

(fπ = 92.4 MeV )

(a) (b) (c) (d)

Figure 1: Feynman diagrams for the meson-baryon interactions in chiral perturbation theory.
(a) Weinberg-Tomozawa interaction, (b) s-channel Born term, (c) u-channel Born term, (d)
NLO interaction. The dots represent the O(p) vertices while the square denotes the O(p2)
vertex.

where qi, Mi and Ei are the momentum, the mass and the energy of the baryon in channel i, and χσi is
the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we
obtain the WT interaction

V WT
ij (W ) = −Cij

4f2
(2W − Mi − Mj)

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
. (15)

The Cij coefficients express the sign and the strength of the interaction for this channel. With the
SU(3) isoscalar factors [101, 102], it is given by [103, 104]

Cij =
∑

α

[6 − C2(α)]

(
8 8 α

Iī, Yī Ii, Yi I, Y

)(
8 8 α

Ij̄, Yj̄ Ij, Yj I, Y

)
, (16)

Y = Yī + Yi = Yj̄ + Yj, I = Iī + Ii = Ij̄ + Ij,

where α is the SU(3) representation of the meson-baryon system with C2(α) being its quadratic Casimir,
Ii and Yi are the isospin and hypercharge of the particle in channel i (i stands for the baryon and ī for
the meson). Explicit values of Cij for the S = −1 meson-baryon scattering can be found in Ref. [8]. It
is remarkable that the sign and the strength of the interaction (15) are fully determined by the group
theoretical factor Cij. This is because the low energy constant is absent in the Lagrangian (13), as it
is derived from the covariant derivative. In the language of current algebra, this is the consequence
of the vector current conservation (Weinberg-Tomozawa theorem) [74, 75]. Indeed, at threshold of
the πN → πN amplitude, Eq. (15) gives the scattering length (the relation of the T-matrix with the
nonrelativistic scattering amplitude is summarized in Appendix)

aπN→πN =






MN

4π(MN + mπ)

mπ

f 2
for I = 1/2

− MN

8π(MN + mπ)

mπ

f2
for I = 3/2

,

in accordance with the low energy theorem.
It is also remarkable that the phenomenological vector meson exchange potential [6] leads to the

same channel couplings with Cij when the flavor SU(3) symmetric coupling constants are used. In fact,
with the KSRF relation g2

V = m2
V /2f 2 [105, 106], the vector meson exchange potential reduces to the

contact interaction V ∝ Cij/f2 in the limit mV → ∞.
Another important feature of Eq. (15) is the dependence on the total energy W . This is a consequence

of the derivative coupling nature of the NG boson in the nonlinear realization. The energy dependence
is an important aspect for the discussion of the s-wave resonance state.
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UPDATED ANALYSIS of K−p LOW-ENERGY CROSS SECTIONS
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SCATTERING AMPLITUDE

threshold region and subthreshold extrapolation

K
−

n

f(K−

n) = fK̄N(I = 1)

K−n scattering length and amplitude

Tetsuo Hyodo

October 24, 2011

The K−n scattering length is calculated as

aK−n = 0.29 + i0.76 fm (WT)

aK−n = 0.27 + i0.74 fm (WTB)

aK−n = 0.57 + i0.72 fm (NLO)

The scattering amplitude is shown in Fig. .
The jump of the real part of the scattering length in the step WTB → NLO is correlated with

the jump of the K−p scattering length:

aK−p = −0.93 + i0.82 fm (WT)

aK−p = −0.94 + i0.85 fm (WTB)

aK−p = −0.70 + i0.89 fm (NLO)

Note that the results with the WT and WTB models are a bit off the SIDDHARTA result.
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Implications & Comments

K−p scattering length more accurately determined than  K−

n

(SIDDHARTA constraints vs. uncertainties in          channels)

Kaonic deuterium measurements important for providing further 
constraints on   K−

n interaction

absorption into non-mesonic
hyperon - nucleon final states

B = 2 systems - key issue:  

K̄NN → YN

e.g.:

Nuclear force in SU(3) limit

T. Inoue (HAL QCD Coll.) PRL106 (2011).

mπ ~ 1 [GeV]

Corresponding to 1S0 NN potential

V (�r) =
−H0ψ(t, �r)
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−

∂

∂t
logψ(t, �r)

−
∂

∂t
ψ(t, �r) =

�
H0 + V (�r)

�
ψ(t, �r)

Λ* N interaction in SU(3) limit

mπ ~ 1 [GeV]

Core of potential appears!
Size of core is almost same as 

for pp interaction

PR
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Lattice QCD
Repulsive short-distance                   
                     interaction ?Λ

∗(uds)N Y. Ikeda et al. 
(HAL QCD collaboration) 

I = 1



 
The SIGMA TERM and STRANGENESS 

in the NUCLEON 

PART 2.

        Mass  and scalar density of quarks in the nucleon

        Pion - nucleon phase shifts and sigma term

        Chiral extrapolations and Lattice QCD

        Implications: chiral condensate in a nuclear medium



3.3 Numerical analysis and contact with lattice QCD
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Figure 3.9: Best-fit curves based on the formula at order ε3 in manifestly covariant SSE,
with cA = 1.5 as input parameter [118]. For comparison, we plot also the
O(p4) 68% error band of Fig.3.8, where the ∆ (1232) is not an explicit degree
of freedom.

The parameter ∆ has been chosen equal either to 271.1 or 293 MeV. The former value
corresponds to the real part of the ∆ (1232) pole in the complex W -plane, the latter to
the Breit-Wigner mass of the ∆ (1232) resonance, see Sec.2.9.2. We identified ∆ as the
physical delta-nucleon mass splitting since lattice data show an almost parallel running
of MN and M∆ with mπ [113].

Table 3.3: Fit results for MN (mπ) at leading-one-loop order, including explicit ∆ (1232)
degrees of freedom. Here λ = 1 GeV.

M0 [GeV] c1 [GeV−1] ẽr
1/ ėr

1(1 GeV) [GeV−3] χ2/d.o.f.

Fit delta I 0.894 ± 0.004 −0.76 ± 0.05 4.5 ± 0.1 0.19
Fit delta II 0.873 ± 0.004 −1.08 ± 0.05 2.8 ± 0.2 0.43
Fit delta IIa 0.881 ± 0.004 −0.95 ± 0.06 2.0 ± 0.2 0.34

We fix the regularization scale λ = 1 GeV. Both Eqs.(3.41) and (3.44) are scale
independent.

The O(ε3) non-relativistic SSE result cannot provide a satisfactory interpolation be-
tween lattice data and physical point. Compared to O(p3) HBChPT, the inclusion of
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Becher and Leutwyler EPJC 9; Procura, Hemmert and Weise PRD 69

Nucleon properties: from lattice QCD to the chiral limit – p.8/35

The nucleon massMN in SU(2) Baryon χPT

Z

d4x eip·x〈0|T {ΨN (x)ΨN (0)}|0〉 =
i

p/ − M0 − Σ(p/) + iε

Σ ∼
p3 p4

MN = M0 − 4 c1m2
π −

3 g2
A

32πf2
π

m3
π +

"

4 er
1(λ) +

3 c2
128π2f2

π

−
3 g2

A

64π2f2
π M0

−
3

32π2f2
π

 

g2
A

M0
− 8 c1 + c2 + 4 c3

!

ln
mπ

λ

#

m4
π +

3 g2
A

256πf2
π M0

2
m5

π + O(m6
π)

Steininger, Meißner and Fettes JHEP 9809; Kambor and Mojžǐs JHEP 9904
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Figure 1: Quenched light hadron spectrum com-
pared with experiment[2].
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Figure 2: Light hadron spectrum in 2+1 flavor QCD
with mπ , mK , mΩ (blue) as physical inputs[3].

a detailed investigation of the quenching effects[2]. The systematic study of the light hadron spec-
trum in the quenched approximation with other systematic errors under control reveals that the
results deviate from the experimental values at a 10% level. The comparison is depicted in Fig. 1
where the three physical inputs are chosen to be mπ , mρ , mK (closed triangles) or mπ , mρ , mφ (open
triangles) to determine the averaged up-down quark mass, the strange one and the lattice spacing
a. The confirmation of the discrepancy between the quenched results and the experimental values
drove us to embark on the 2+1 flavor QCD simulations where the vacuum polarization effects of
the up, down and strange quarks are incorporated with an artificial condition mu = md. Figure 2
shows one of the recent 2+1 flavor QCD results for the light hadron spectrum obtained by the
PACS-CS Collaboration[3]. Most of the results are consistent with experimental values within er-
ror bars, though some cases show 2−3% deviations at most. Similar results are obtained by other
groups[4].

Although there is no doubt that we are successfully reducing the systematic errors, the current
situation is not sufficient. The reason is that we find two types of problems in Fig. 2. First one is
the artificial isospin symmetry mu = md which is employed in almost all the current simulations
due to an algorithmic reason. If we want to discuss the errors at a level of 1 %, it is necessary
to incorporate the isospin symmetry breaking effects: up-down quark mass difference and also
electromagnetic interactions. For the latter there are a couple of exploratory studies to investigate
the effects at the unphysically heavy quark mass region[5]. Note that both effects are so small that
the investigation at the physical point is highly desired to avoid any contamination associated with
chiral extrapolations. Second problem is unstable particles. Some hadrons listed in Fig. 2 are the
resonance states in the strong interactions. Although it has been known for a long time that the
resonance states should be treated in a proper manner on the lattice[6], it is quite recently that it is
made possible. In the next section we will explain the current status of lattice QCD calculation of
the ρ-ππ resonance.

3. ρ-ππ resonance

Phase shift is an essential ingredient to investigate hadron-hadron interactions. In case of
the ρ → ππ decay the relevant quantity is the P-wave scattering phase shift for the I = 1 two-

3
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Pion-nucleon sigma term σN in SU(2) Baryon χPT

σN = 〈N("p )|muūu + mdd̄d |N("p )〉 =
X
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Using best fit results for MN (mπ) at order p4:

0 0.1 0.2 0.3 0.4 0.5

mΠ
2
!GeV2 "

0

100

200

300

400

500

600

Σ
N
!M
e
V
"

0 0.01 0.02 0.03 0.04 0.05

mΠ
2
!GeV2 "

0

20

40

60

80

100

Σ
N
!M
e
V
"

σN = 49 ± 3 MeV vs. σemp
N = 45 ± 8 MeV (GLS 91)

Nucleon properties: from lattice QCD to the chiral limit – p.26/35

SIGMA TERMS

Pion-nucleon sigma term:

M. Procura et al.
 Phys. Rev. 

D73 (2006) 114510

Previous status:

σ
emp
N =

45 ± 8 MeV

from chiral
interpolation using 
older lattice data

Strangeness content:

(

m̄ =
mu + md

2

)

σN =
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Combined analysis of baryon octet (and decuplet)

3

uncertainty arising from the truncation of the ex-
pansion is automatically incorporated into the un-
certainties of the fit;

• if lattice results are included from outside the PCR,
then through the χ2, Λ is optimised so as to give
a best-estimate of a resummation of a subset of
higher-order terms from beyond the working order
of the chiral expansion.

To begin, we introduce a single new energy scale
through the dipole regularisation form. The best-fit to
the LHPC (PACS-CS) results, with 5 fit parameters, is
shown in the upper (lower) panel of Fig. 1. As explained
above, the fits include only those simulation points for
m2

π < 0.2 GeV2. Nevertheless, we see that the level of
agreement with the lattice simulations at higher m2

π is
remarkably good. The errors indicated by the bands com-
bine the statistical errors with the errors associated with
the variation of Λ within the range allowed by χ2.

For the LHPC (PACS-CS) results the optimal dipole
regularisation scale is found to be Λ = 1.1 ± 0.4 GeV
(1.20±0.24 GeV). The optimal χ2

dof is 0.25 (0.33), where
the improvement over the above linear forms is evident.
As discussed, the existence of a preferred regularisation
scheme is a direct signature that the results lie outside the
PCR. Nevertheless, the extrapolated precision obtained
is rather encouraging, considering that the uncertainties
incorporate the effect of the relatively large range per-
mitted for the regularisation scale, ∼ 0.7–1.5 GeV.

The lower panel of Fig. 1 shows a fit to just the three
lightest values of the light quark masses, at fixed κs, used
by PACS-CS. Also shown is a comparison, using that fit,
to the results of the simulation at the third lowest light
quark mass, which also involved a lower strange quark
mass. The agreement between the results of the simula-
tion and the predicted values is illustrative of the relia-
bility of the fit in estimating the dependence of the octet
masses on the strange-quark mass. In the following anal-
ysis, the lattice points at the extra strange-quark mass
are included.

Given that our results do demonstrate that we are out-
side the PCR, we also use the sharp cutoff regularisa-
tion as an alternative, in order to quantify the model-
dependence. Other smooth forms [19] yield results which
are essentially indistinguishable from the dipole form.

In Table I we report best-estimates of the physical
masses by combining the different lattice simulations as-
suming they are each good approximations of the con-
tinuum limit. We treat the difference between the sim-
ulations as an estimate of the discretisation uncertainty.
We also report the dimensionless baryon sigma terms,
σ̄Bq = (mq/MB)∂MB/∂mq. We note that the model-
dependence, estimated by the difference between the
dipole and sharp cutoff regularisation forms, is relatively
small compared with the present statistical precision. On
the other hand, this model-dependence will not decrease
with increased statistics and therefore the present analy-
sis, at this order and at these quark masses, is precision
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FIG. 1: The upper and lower panels show, respectively, the

dipole fits (lines) to the LHPC and PACS-CS lattice simula-

tion results (circles) of the octet baryon masses (curves top to

bottom show Ξ, Σ, Λ and N). The curves show the extrapola-

tion based on the mK values of the actual lattice simulation.

The squares at the physical pion mass display the extrapo-

lation to the physical quark masses. The stars denote the

physical baryon masses. The third lightest pion mass of the

PACS-CS results, which involved a lower strange quark mass,

is not included in the displayed fit. This allows a prediction

(squares) based on the other points (see text).

limited. Improvements beyond this will certainly require
increased efforts in the EFT and numerical computations
deeper in the chiral regime.

Our results show agreement between the absolute val-
ues of the baryon masses and the corresponding exper-
imental values. Firstly, this is an important indepen-
dent confirmation of the scale determination reported by
Aubin et al. [6]. Indeed the agreement appears better
than one could expect based on the nominal 2% error
quoted in Ref. [6], suggesting that the quoted precision
may have been underestimated. Further, the sigma terms
extracted by differentiating the fitting formulae, have
some quite interesting features. Firstly, the pion-nucleon
sigma commutator is consistent with phenomenological
estimates. The strangeness sigma commutator is consis-
tent with best EFT estimates [10], yet an order of mag-
nitude more precise. This small value is observed to be

R.D. Young,  A.W. Thomas
 Phys. Rev.  D81 (2010) 014503  
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σN = 47 (9)(1)(3)MeV

(statist.)   
(lattice artifacts)   

(chiral extrap.)   

consistent with earlier results 
and with phenomenology

σNs = ms 〈N|̄ss|N〉 = ms

∂MN

∂ms

Strange quark contribution

σNs = 31 (15)(4)(2)MeV

much smaller than previously expected !
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TABLE I: Main physical observables obtained from the O(p3) πN
scattering amplitude in the EOMS renormalization scheme fitted to
different PW analyses up toWmax = 1.2 GeV (Wmax = 1.16 GeV
for EM). Results of the scattering lengths are in units of 10−2 m−1

π .

χ2
d.o.f. hA gπN ∆GT [%] a+

0+ a−

0+

KH [8] 0.75 3.02(4) 13.51(10) 4.9(8) −1.2(8) 8.7(2)
GW [9] 0.23 2.87(4) 13.15(10) 2.1(8) −0.4(7) 8.2(2)
EM [38] 0.11 2.99(2) 13.12(5) 1.9(4) 0.2(3) 7.7(1)

from the∆(1232) resonance and the results for the σπN were
not accurate, being typically too large. The inclusion of the
∆ as an explicit degree of freedom in the so-called small-
scale-expansion (SSE) [21] (that counts ε = M∆ −MN ∼ p)
up to O(ε3) [22], offers a noticeably increase in the range
of energies described compared with HBχPT at O(p3) [19].
Nonetheless, there is a strong dependence on the fitted values
of the LECs with the PW analysis used as input that prevents a
direct extraction of σπN by fitting scattering data [22]. After
these difficulties, the conclusion was that the chiral conver-
gence was not fast enough in the physical region so to extract
useful information on σπN from the PW phase shifts [23].
It has been shown that the non-relativistic expansion imple-

mented in HB approach does not converge in part of the low
energy region [14, 24, 25]. This led to the studies in the man-
ifestly Lorentz covariant infrared (IR) BχPT [24, 26–28]. In
this case, the amplitude up to O(p4) without the∆ as explicit
degree of freedom, shows an accurate and rapidly convergent
description in the subthreshold region but fails to connect it to
the physical one [26], confirming the conclusions about σπN

drawn from the previous works in HB. Above threshold, the
IR amplitudes up to O(p3) (without ∆ degrees of freedom)
also give a good description of the PWs at low-energies [28],
although they predict an unphysically too large violation of
about 20% in the Goldberger-Treiman (GT) relation [27, 28].
This problem, which arises from the resummation of relativis-
tic corrections performed by the IR method, clearly jeopar-
dizes the applicability of χPT to the πN system.
In this paper, we present a χPT analysis of the πN -

scattering amplitude up to O(p3) accuracy that includes two
main improvements over previous work. In the first place, we
use Lorentz covariant BχPT with a consistent power count-
ing obtained via the extended-on-mass-shell (EOMS) renor-
malization scheme [29]. The reason for using this prescrip-
tion, instead of IR, is that the latter introduces unphysical cuts
that may influence the low-energy region [16, 30, 31]. In the
present case, this problem of analyticity afflicts the crossed
channel of the πN scattering amplitude [28]. As we will see
below, the large GT discrepancy found in Refs. [27, 28] can
be traced back to the analyticity issues of the IR method rather
than to a breaking of the chiral convergence in the πN sys-
tem. In addition, we obtain amplitudes independent of the
renormalization scale, which is not the case for those given by
IR [24, 26–28]. Secondly, we explicitly include the ∆ taking
into account that, below the resonance region, the diagrams
with the ∆ are suppressed in comparison with those with the
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FIG. 1: (Color on-line) Phase shifts given by the Lorentz covariant
O(p3) πN scattering amplitude in the EOMS scheme fitted to the
GW solution (circles) [9] up toWmax = 1.2 GeV.

nucleon. This can be implemented in the so-called δ-counting
by assigning an extra fractional suppression of O(p1/2) to
the ∆-propagators in the Feynman diagrams [32, 33]. For
the N∆ chiral Lagrangians, we use the consistent formu-
lation of Pascalutsa [33–35] which filters the unphysical com-
ponents of the relativistic spin-3/2 spinors and eliminate the
dependence on off-shell parameters that the conventional ver-
tices have. The technical details of this calculation and the
complete results derived thereafter will be presented in detail
elsewhere [36]. In the following, we outline the analysis and
show its main results on the πN phase shifts, the GT discrep-
ancy, the πN and πN∆ couplings, the πN scattering lengths
and the pion-nucleon sigma term.
The calculation proceeds as in Ref. [28] but with the loops

in Fig. 1 of that reference treated in the EOMS scheme. This
is achieved by canceling the UV divergences obtained in di-
mensional regularization such that the power-counting break-
ing pieces of the loops are absorbed into the O(p) LECs, gA
(axial coupling of the nucleon) andMN , and into the 4O(p2)
LECs, c1, c2, c3, c4. The 5 combinations of O(p3) LECs,
d1 + d2, d3, d5, d14 − d15 and d18 are renormalized in the
MS scheme. Besides that, we also include the Born-term
with an intermediate ∆(1232) resonance and leading O(p)
vertices given by theN∆ axial coupling hA (Born-terms with
O(p2) N∆ couplings [22, 37] have also been considered but
they give a negligible contribution and have been omitted in
the present study), whereas the corresponding loops with ∆
propagators are of higher-order.
We fix the values of the LECs fitting the center-of-mass

(CM) energy dependence of the 2 S- and 4 P -wave phase
shifts obtained from the chiral amplitude to the latest solutions
of the KH [8] and GW [9] groups. In addition, we include
the analysis of the Matsinos’ group (EM) [38] which focuses
on the PW parameterization of the data at very low energies
without imposing dispersive constraints from the high-energy
region. We follow the logic of Ref. [28] to assign errors to the
first two analyses (they do not provide errors) while for the

SIGMA TERM  . . .   contd.

updated pion-nucleon phase shift analysis: M. M. Pavan, I. I. Strakovsky, 
R. L. Workman, R. A. Arndt,
PiN Newslett. 16, 110-115 (2002) σN = 64 ± 7 MeV !

J.M. Alarcón,  J. Martin Camalich,  J.A. Oller;  arXiv:1110.3797 [hep-ph]

covariant chiral perturbation theory with explicit ∆(1232)

phase
shift
[deg]

fix pion-nucleon 
low-energy constants

deduce (large) 
sigma term:

σN = 59 ± 7 MeV



G. Bali et al. (QCDSF) ;  arXiv:1110.3797 [hep-ph]
FIG. 1: Chiral extrapolation of the nucleon and omega masses. Lattice data are taken from Ref.

[5].

combinations,

∆1 =
3
4 MΛ +

1
4 MΣ − 1

2 (MN −MΞ)− 1
4 (MΣ∗ −M∆ −MΩ +MΞ∗) ,

∆2 = MΩ −MΞ∗ − 2 (MΞ∗ −MΣ∗) +MΣ∗ −M∆ ,

∆3 = MΣ∗ −MΣ −MΞ∗ +MΞ , (22)

studied before in Refs. [26, 28]. As shown in Ref. [26], a strict large-Nc expansion of the

baryon masses at NNLO predicts ∆1 = ∆2 = ∆3 = 0. The merit of ∆1 and ∆2 lies in

their independence of all parameters but ζ̄0,D,F , ξ̄0,D, and M̄[8]. The mass combination ∆3

has only an additional dependence on d̄D − 3 (b̄F + b̄D). These properties are a consequence

of the self-consistency constraint and the large-Nc sum rules (10), which we use for the

renormalized coupling constants at the renormalization scale µUV = M̄[8].

Using the empirical values for ∆1 � 3.2 MeV and ∆2 � −6.1 MeV, together with the
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FIG. 7. Extrapolation of σPSN/m
2
PS to the physical point [21]

using covariant BχPT. The solid symbol corresponds to the
value that we directly obtain at mPSr0 ≈ 0.73 on the L = 40a
volume and the open symbol to the result from the smaller
volume. The broad error band is obtained when ignoring this
constraint. The horizontal line denotes the constant leading
order expectation Eq. (43).

in the preliminary number [21]

σphys
πN = (38± 12)MeV (44)

at the physical point. The error includes both, the statis-
tical uncertainty of the fit and the systematics from vary-
ing the low energy parameters c2, c3 and l3 within their
phenomenologically allowed ranges [33–35]. A detailed
analysis will be presented in Ref. [21]. We display the re-
sult of this extrapolation in Fig. 7 for the ratio σPSN/m2

PS
in units of r0, together with our direct determinations.
The broad error band indicates the result of the same fit,
without using our constraint at mPS ≈ 285 MeV.
We now use Eq. (35) with αZ given in Eq. (29) to ob-

tain the renormalized strangeness matrix element from
the values given above. This amounts to subtracting
numbers of similar sizes from each other. There is no
noticeable finite size effect between the 323 and 403 vol-
umes. For our simulation point at a low pion massmPS ≈
285 MeV we obtain the values, a[ms〈N |s̄s|N〉]ren =
0.005(6) and 0.008(6) for the two determinations of the
renormalization parameter αZ from the VWI and AWI,
respectively.
Of particular phenomenological interest is the dimen-

sionless strange quark contribution to the nucleon mass

fTs
=

[ms〈N |s̄s|N〉]ren

mN
= 0.012(14)+10

−3 . (45)

Again, we quote the value obtained from the VWI pre-
scription, with a systematic error that incorporates the
difference between the two determinations of the renor-
malization constant ratios and their respective uncertain-
ties. This may be indicative of O(a) effects. The prob-
lem of large cancellations cannot be overcome easily. One

needs to get closer to the continuum limit so that αZ ap-
proaches zero. For instance, at β = 5.40, αZ ≈ 0.2 [28],
significantly reducing the subtraction of the connected
diagram (and probably the value of 〈N |s̄s|N〉lat that will
contain a smaller light quark contribution).
The result obtained is interesting insofar as it suggests

a scalar strangeness of less than 4% of the nucleon mass,
σs = 12+23

−16 MeV. In spite of the relative enhancement
by the ratio ms/mud > 25 this is not bigger than the
pion-nucleon σ-term above. This is quite consistent with
the finding of Eq. (40) of a tiny renormalized light sea
quark participation in σPSN. We remark that taking
the combinationmlat

s 〈N |s̄s|N〉lat without the proper sub-
traction would have resulted in fTs

≈ 0.12, even bigger
than the light quark mass contribution of about 0.09, at
our light quark mass value that exceeds the physical one
by a factor of about four. Neglecting the mixing with
light quarks in the renormalization is probably the main
reason why this contribution was overestimated in the pi-
oneering lattice studies, see e.g. Ref. [36] and references
therein. Early results are also summarized in Ref. [18]
We can constrain the scale-independent y-ratio of

Eq. (36),

y =

{

(1 + αZ) 0.333(36)− αZ , L = 32a

(1 + αZ) 0.320(33)− αZ , L = 40a
(46)

=

{

0.059(37)(28) , L = 32a

0.041(37)(29) , L = 40a ,
(47)

where the errors are statistical and the difference between
the two determinations of αZ, respectively. Again, as the
central value, we have taken the result from the VWI
renormalization factor. From our determination of the
pion-nucleon σ-term we know that the denominator of
Eq. (36) will increase by a factor 1.4–1.5 when extrap-
olated to the chiral limit. Based on the weak observed
dependence of 〈N |s̄s|N〉lat on the valence quark mass,
see Fig. 6, we would expect the numerator to exhibit a
less pronounced quark mass dependence. Thus a 95 %
confidence-level upper limit on the y-parameter y < 0.14
should also apply at physically light sea quark masses.
Finally, we also predict the gluonic (and heavy sea

quark) contribution fTG
of Eq. (4),

fTG
= 1−

σπN + σs

mN
= 0.951+20

−27 . (48)

This means that the light and strange quark flavours con-
tribute a fraction between 3 % and 8 % to the nucleon
mass.

V. SUMMARY

We directly calculate the light quark and strangeness
σ-terms on lattices with spatial extents up to LmPS ≈
4.2, a lattice spacing a−1 ≈ 2.71 GeV and a pseu-
doscalar mass mPS ≈ 285 MeV. At this mass point and

σN = 38 ± 12 MeV

   Very small scalar strange sea 
component in the nucleon 

A. Simke, MFM Lutz ;  arXiv:1111.0238 [hep-ph]

σN ∼ 40 MeV

Covariant SU(3) x SU(3)
chiral perturbation theory to NNNLO
with octet and decuplet baryons

S. Dürr et al. (BMW) 
Science 322 (2008) 1224

lattice QCD



CHIRAL  CONDENSATE  at finite  BARYON  DENSITY  
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 why the SIGMA TERM is so important: 
DENSITY DEPENDENCE of CHIRAL  CONDENSATE  

Substantial change of symmetry breaking scenario
between chiral limit mq = 0 and physical quark mass mq ∼ 5MeV

Nuclear Physics would be very different in the chiral limit !

constrained by 
realistic nuclear

equation of state

In-medium
Chiral

Effective
Field Theory

(Fermi gas)

N. Kaiser,  Ph. de Homont,  W. W.
Phys. Rev. C 77 (2008) 025204 

(NLO  3-loop) 

(σN = 45MeV)



NEUTRON  MATTER
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In-medium chiral effective field theory (3-loop) with resummation 
of short distance contact terms (large nn scattering length,
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N. Kaiser,  Nucl. Phys. A 860 (2011) 370

perfect agreement with sophisticated many-body calculations
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Outlook:

New Constraints
from

NEUTRON STARS



direct measurement of

neutron star mass from

increase in travel time

near companion

J1614-2230

most edge-on binary

pulsar known (89.17°)

+ massive white dwarf

companion (0.5 Msun)

heaviest neutron star

with 1.97±0.04 Msun

Nature, Oct. 28, 2010
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ! R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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FIG. 1: Pressure of neutron star matter based on chiral low-momentum interactions for densities ρ < ρ1 (corresponding
to a neutron density ρ1,n = 1.1ρ0). The band estimates the theoretical uncertainties from many-body forces and from an
incomplete many-body calculation. At low densities, the results are compared to a standard crust EOS [16], where the right
panel demonstrates the importance of 3N forces. The extension to higher densities using piecewise polytropes (as explained in
the text) is illustrated schematically in the left panel.

< 5% for densities ρ0/8 < ρ < ρ1 = 3.0 × 1014 g cm−3

(ρ1 corresponds to a neutron density ρ1,n = 1.1ρ0). We
obtain the following symmetry energy parameters and
proton fractions:

c1 [GeV−1] c3 [GeV−1] S2 [MeV] γ x(ρ0)

−0.7 −2.2 30.1 0.5 4.8%
−1.4 −4.8 34.4 0.6 7.2%

NN-only EM 26.5 0.4 3.3%
NN-only EGM 25.6 0.4 2.9%

The resulting pressure of neutron star matter is shown
in Fig. 1 for densities ρ < ρ1. The comparison of these
parameter-free calculations to a standard crust EOS [16]
shows good agreement to low densities ρ ! ρ0/10 within
the theoretical uncertainties. The band in Fig. 1 is domi-
nated by the uncertainty in c3, which may seem large, but
can be expected at leading 3N order [17]. In addition, the
right panel of Fig. 1 demonstrates the importance of 3N
forces. The pressure obtained from low-momentum NN
interactions only, based on the RG-evolved chiral N3LO
potentials of Entem and Machleidt (EM) [11] or of Epel-
baum et al. (EGM) [12], differ significantly from the
crust EOS at ρ0/2.
Neutron stars.– The structure of neutron stars (non-

rotating and without magnetic fields) is determined by
solving the Tolman-Oppenheimer-Volkov (TOV) equa-
tions. Because the central densities reach values higher
than ρ1, we need to extend the uncertainty band for
the pressure of neutron star matter beyond ρ1. To this
end, we introduce a transition density ρ12 that separates
two higher-density regions, and describe the pressure by
piecewise polytropes, P (ρ) = κ1ρΓ1 for ρ1 < ρ < ρ12, and
P (ρ) = κ2ρΓ2 for ρ > ρ12, where κ1,2 are determined by
continuity of the pressure. Ref. [18] has shown that such
a piecewise polytropic EOS can match a large set of neu-

tron star matter EOS taking 1.5 < Γ1,2 < 4.0 and transi-
tion densities ρ12 ≈ (2.0 . . . 3.5)ρ0. We therefore extend
the pressure of neutron star matter based on chiral EFT
using two general piecewise polytropes, as illustrated in
Fig. 1, with 1.5 < Γ1,2 < 4.5 and 1.5 < ρ12/ρ0 < 4.5.

We solve the TOV equations for the limits of the pres-
sure band below nuclear densities continued by the piece-
wise polytropes to higher densities. The range of Γ1,2

and ρ12 can be constrained further, first, by causality
that limits the speed of sound to lightspeed, and second,
by requiring the EOS to support a neutron star with at
least M = 1.65M" [19]. The resulting allowed range
of polytropes is shown by the light blue band at higher
density in Fig. 2. The comparison with a representa-
tive set of EOS used in the literature [15] demonstrates
that the pressure based on chiral EFT interactions (the
darker blue band) sets the scale for the allowed higher-
density extensions and is therefore extremely important.
It also significantly reduces the spread of the pressure at
nuclear densities from a factor 6 at ρ1 in current neutron
star modeling to a factor 1.5.

Results.– In Fig. 3 we show the neutron star M -R
curves obtained from the allowed EOS range. The blue
region corresponds to the blue band for the pressure in
Figs. 1 and 2. At the limits of this region, the pressure
of neutron star matter continues in form of the piece-
wise polytropes, and all curves end when causality is
violated. If this is reached before a maximum mass at
dM/dR = 0, one could continue the M -R curves by en-
forcing causality. This would lead to a somewhat larger
maximum mass, but would not affect the masses and
radii of neutron stars with lower central densities. We
observe from the transition density points ρ12 in Fig. 3
that the range of Γ1 dominates the uncertainty of the
general extension to high densities. Smaller values of Γ1

neutron star matter

(chiral EFT)

ρ0 ρn

News from NEUTRON STARS

K. Hebeler,  J. Lattimer,  C. Pethick,  A. Schwenk 
PRL 105 (2010) 161102

realistic “nuclear” EoS
(Illinois 1998)

A.W. Steiner,  J. Lattimer,  E.F. Brown 
Astroph. J. 722 (2010) 33

kaon 
condensate

quark 
matter

New constraints
from  EFT  and 
neutron star 
observables

“Exotic” equations of state ruled out ?



NEUTRON  STAR  MATTER
Equation of State

Including  new  neutron  star  constraints  plus 
 Chiral Effective Field Theory  at lower density

B. Röttgers,  W. W.     
 (2011)

Prog. Part. Nucl. Phys.
(2012) in print
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Figure 6.3: PSR J1614-2230 and the observational constraints to the radii due to Steiner
et al. delimits the range for the physical EoS into the green area (for further explanation
see text). The horizontal dashed lines are the limits previously given for P2 according to
[19]. The APR EoS [20] is shown for comparison.

Low-density (crust) + ChEFT (FKW)
Constrained extrapolation (polytropes)
Akmal, Pandharipande, Ravenhall (1998)

nuclear physics
constraints

astrophysics
constraints

M(R)

S. Fiorilla, 
N. Kaiser,  W. W.
arXiv:1111.3688

NPA (2012) in print
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SUMMARY

New 
consistent analysis of K̄N threshold physics and scattering data 
based on chiral SU(3) effective Lagrangian at next-to-leading order 

New evaluation of 

a(K−p) = −0.65 + 0.81 i [fm]

Need kaonic deuterium to complete K̄N and set constraints for  ̄KNN

(~ 15 % accuracy)

a(K−

n) ! 0.6 + 0.7 i [fm] (less accurate)deduced:

K−p scattering length:

Nucleon sigma term: 
Lattice QCD continuously improving towards σN ∼ 40MeV

Very small sea of strange quarks in the nucleon

New constraints from two-solar-mass neutron star and window 
of n-star radii: 
conventional EoS works best - kaon condensate ruled out


