Workshop

"Future Prospects of Hadron Physics at J-PARC and Large Scale Computational Physics"

Tokai, Japan

II February 2012

Chiral Symmetry and Hadron Physics

- selected topics -

Wolfram Weise
Technische Universität München

- Low-energy QCD:
 symmetries and symmetry breaking patterns
- Strangeness and chiral SU(3) dynamics
- The sigma term of the nucleon and its implications
- New constraints from neutron stars

Hierarchy of QUARK MASSES in QCD

$$egin{aligned} \mathbf{m_d} &\simeq \mathbf{4-6~MeV} \ \mathbf{m_u/m_d} &\sim \mathbf{0.3-0.6} \ \mathbf{m_s} &\simeq \mathbf{80-130~MeV} \ (\mu &\simeq \mathbf{2~GeV}) \end{aligned}$$

 $m_{f c} \simeq 1.25 \; {
m GeV}$ $m_b \simeq 4.2 \; {
m GeV}$ $m_t \simeq 174 \; {
m GeV}$

- LOW-ENERGY QCD: CHIRAL EFFECTIVE FIELD THEORY

- Non-Relativistic QCD: HEAVY QUARK EFFECTIVE THEORY
- ullet expansion in powers of $1/\mathrm{m}_{\mathbf{Q}}$

Spontaneously Broken CHIRAL $SU(3)_L \times SU(3)_R$ SYMMETRY

NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet

$$\{\phi_a\} = \{\pi, \mathbf{K}, \bar{\mathbf{K}}, \eta_8\}$$

DECAY CONSTANTS

(chiral limit: f = 86.2 MeV)

ORDER PARAMETERS:

$$\langle 0|\mathbf{A}_a^{\mu}(0)|\phi_b(p)\rangle = i\delta_{ab}\,p^{\mu}\,\mathbf{f}_b$$

$$egin{aligned} \mathbf{f}_{\pi} &= 92.4 \pm 0.3 \; ext{MeV} \ \mathbf{f}_{\mathbf{K}} &= 110.0 \pm 0.9 \; ext{MeV} \ \mathbf{f}_{\eta} &= 120.1 \pm 4.6 \; ext{MeV} \end{aligned}$$

PART 1.

LOW-ENERGY QCD with STRANGE QUARKS

... realized as an **EFFECTIVE FIELD THEORY** with SU(3) octet of pseudoscalar Nambu-Goldstone bosons coupled to the baryon octet.

- Strange quarks are intermediate between "light" and "heavy":
 - interplay between spontaneous and explicit chiral symmetry breaking
- Testing ground: high-precision antikaon-nucleon threshold physics
- O Nature and structure of $\Lambda(1405)~(\mathbf{B}=\mathbf{1},~\mathbf{S}=-\mathbf{1},~\mathbf{J^P}=\mathbf{1/2^-})$
- Role of strangeness in dense baryonic matter?
 - > new constraints from **neutron stars**

CHIRAL SU(3) EFFECTIVE FIELD THEORY

 Interacting systems of NAMBU-GOLDSTONE BOSONS (pions, kaons) coupled to BARYONS

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_{B}(\Phi, \Psi_{B})$$

Leading **DERIVATIVE** couplings (involving $\partial^{\mu}\Phi$)
determined by spontaneously broken **CHIRAL SYMMETRY**

Low-Energy Expansion: CHIRAL PERTURBATION THEORY

"small parameter":
$$rac{
m p}{4\pi\,f_\pi}\simrac{
m energy\,/\,momentum}{1~{
m GeV}}$$

works well for low-energy pion-pion and pion-nucleon interactions

Low-Energy K N Interactions

• Chiral Perturbation Theory NOT applicable: $\Lambda(1405) \ \ {\rm resonance} \ \ 27 \ {\rm MeV} \ \ {\rm below} \ \ {\rm K} \ \ {\rm p} \ \ {\rm threshold}$

Non-perturbative

Coupled Channels

approach based on

Chiral SU(3) Dynamics

N. Kaiser, P. Siegel, W.W. (1995) E. Oset, A. Ramos (1998)

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$\mathbf{T_{ij}} = \mathbf{K_{ij}} + \sum_{\mathbf{n}} \mathbf{K_{in}} \, \mathbf{G_n} \, \mathbf{T_{nj}}$$

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)
Note: ENERGY DEPENDENCE characteristic of Nambu-Goldstone Bosons

- driving interactions individually **strong** enough to produce
 - ightharpoonup $ar{K}N$ bound state

 $\rightarrow \pi \Sigma$ resonance

ullet strong channel coupling $12 \leftrightarrow 21:$

$$egin{align*} \pi_{oldsymbol{\cdot}} & \Sigma \ \mathbf{K_{12}} = rac{-1}{2\,\mathbf{f_\pi}\,\mathbf{f_K}} \sqrt{rac{3}{2}} \left(\sqrt{\mathbf{s}} - rac{\mathbf{M_\Sigma} + \mathbf{M_N}}{2}
ight) \end{aligned}$$

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$\mathbf{T_{ij}} = \mathbf{K_{ij}} + \sum_{\mathbf{n}} \mathbf{K_{in}} \, \mathbf{G_n} \, \mathbf{T_{nj}}$$

input from chiral SU(3) meson-baryon effective Lagrangian

loop functions
(dim. regularization)
with subtraction constants
encoding short distance dynamics

coupled channels:

$$\mathbf{K}^{-}\mathbf{p},\ \mathbf{\bar{K}^{0}n},\ \pi^{0}\mathbf{\Sigma^{0}},\ \pi^{+}\mathbf{\Sigma}^{-},\ \pi^{-}\mathbf{\Sigma}^{+},\ \pi^{0}\boldsymbol{\Lambda},\ \eta\boldsymbol{\Lambda},\ \eta\mathbf{\Sigma^{0}},\ \mathbf{K}^{+}\mathbf{\Xi}^{-},\ \mathbf{K}^{-}\mathbf{\Xi^{0}}$$

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS:

NLO hierarchy of driving terms

leading order (Weinberg-Tomozawa) terms input: physical pion and kaon decay constants

direct and crossed **Born terms**input: axial vector constants
D and F from hyperon beta decays

$$g_A = D + F = 1.26$$

$$\mathcal{L}_1^{MB} = \text{Tr}\left(\frac{D}{2}(\bar{B}\gamma^{\mu}\gamma_5\{u_{\mu}, B\}) + \frac{F}{2}(\bar{B}\gamma^{\mu}\gamma_5[u_{\mu}, B])\right)$$

next-to-leading order (**NLO**) input: 7 low-energy constants

 $\mathcal{O}(p^2)$

$$\mathcal{L}_{2}^{MB} = b_{D} \text{Tr}(\bar{B}\{\chi_{+}, B\}) + b_{F} \text{Tr}(\bar{B}[\chi_{+}, B]) + b_{0} \text{Tr}(\bar{B}B) \text{Tr}(\chi_{+}) + d_{1} \text{Tr}(\bar{B}\{u^{\mu}, [u_{\mu}, B]\}) + d_{2} \text{Tr}(\bar{B}[u^{\mu}, [u_{\mu}, B]]) + d_{3} \text{Tr}(\bar{B}u_{\mu}) \text{Tr}(u^{\mu}B) + d_{4} \text{Tr}(\bar{B}B) \text{Tr}(u^{\mu}u_{\mu}),$$

The TWO POLES scenario

D. Jido et al., Nucl. Phys. A723 (2003) 205

T. Hyodo, W.W.: Phys. Rev. C 77 (2008) 03524

T. Hyodo, D. Jido: Prog. Part. Nucl. Phys. 67 (2012) 55

ANTIKAON - NUCLEON THRESHOLD PHYSICS and LOW-ENERGY OBSERVABLES

New **kaonic hydrogen** data

M. Bazzi et al.: Phys. Lett. B 704 (2011) 113

strong interaction shift and width:

$$\Delta \mathbf{E} = \mathbf{283} \pm \mathbf{36} (stat) \pm \mathbf{6} (syst) \quad \mathbf{eV}$$

$$\Gamma = \mathbf{541} \pm \mathbf{89} (stat) \pm \mathbf{22} (syst) \quad \mathbf{eV}$$

Theory: leading order (Tomozawa - Weinberg)

B. Borasoy, R. Nißler, W.W. Eur. Phys. J. A25 (2005) 79

B. Borasoy, U.-G. Meißner, R. Nißler PRC74 (2006) 055201

Improved constraints on chiral SU(3) dynamics from kaonic hydrogen

Yoichi Ikeda ^{a,b,*}, Tetsuo Hyodo ^a and Wolfram Weise ^c

^aDepartment of Physics, Tokyo Institute of Technology, Meguro 152-8551, Japan

^bRIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

^cPhysik-Department, Technische Universität München, D-85747 Garching, Germany

Abstract

A new improved study of K^- -proton interactions near threshold is performed using coupled-channels dynamics based on the next-to-leading order chiral SU(3) meson-baryon effective Lagrangian. Accurate constraints are now provided by new high-precision kaonic hydrogen measurements. Together with threshold branching ratios and scattering data, these constraints permit an updated analysis of the complex $\bar{K}N$ and $\pi\Sigma$ coupled-channels amplitudes and an improved determination of the K^-p scattering length, including uncertainty estimates.

arXiv: 1109.3005

Physics Letters B 706 (2011) 63

UPDATED ANALYSIS of $\, \mathbf{K}^- \mathbf{p} \,$ THRESHOLD PHYSICS

Y. Ikeda, T. Hyodo, W.W.

Phys. Lett. B 706 (2011) 63

Nucl. Phys. A (2012), in print

Chiral SU(3) coupled-channels dynamics
 Tomozawa Wainbarg + Born terms +

Tomozawa-Weinberg + Born terms + NLO

kaonic hydrogen shift & width	theory (NLO)	exp.
${f \Delta E} \; ({f eV})$	306	$283 \pm 36 \pm 6$
$oldsymbol{\Gamma}~(\mathbf{eV})$	591	$541 \pm 89 \pm 22$
threshold branching ratios		(SIDDHARTA)
$rac{oldsymbol{\Gamma}(\mathbf{K}^-\mathbf{p} ightarrow\pi^+oldsymbol{\Sigma}^-)}{oldsymbol{\Gamma}(\mathbf{K}^-\mathbf{p} ightarrow\pi^-oldsymbol{\Sigma}^+)}$	2.37	$\boldsymbol{2.36 \pm 0.04}$
$\frac{\Gamma(\mathbf{K}^-\mathbf{p}\to\pi^+\Sigma^-,\pi^-\Sigma^+)}{\Gamma(\mathbf{K}^-\mathbf{p}\to\text{all inelastic channels})}$	0.66	$\boldsymbol{0.66 \pm 0.01}$
$rac{oldsymbol{\Gamma}(\mathbf{K}^{-}\mathbf{p} ightarrow\pi^{0}oldsymbol{\Lambda})}{oldsymbol{\Gamma}(\mathbf{K}^{-}\mathbf{p} ightarrow ext{neutral states})}$	0.19	$\boldsymbol{0.19 \pm 0.02}$

UPDATED ANALYSIS of $\rm\,K^-p\,$ THRESHOLD PHYSICS with SIDDHARTA constraints

Y. Ikeda, T. Hyodo, W.W.

Phys. Lett. B 706 (2011) 63

Nucl. Phys. A (2012), in print

 Non-trivial result: best NLO fit prefers physical values of decay constants:

$$f_K ext{ (MeV)}$$
 110.0
 $f_{\eta} ext{ (MeV)}$ 118.8

$$(f_{\pi} = 92.4 \; MeV)$$

Tomozawa-Weinberg terms dominant

Born terms significant

NLO parameters are non-negligible but small

UPDATED ANALYSIS of ${ m K^-p}$ LOW-ENERGY CROSS SECTIONS

${\bf K}^{-}{\bf p}$ scattering amplitude

$$\mathbf{f}(\mathbf{K}^{-}\mathbf{p}) = rac{1}{2}ig[\mathbf{f}_{\mathbf{ar{K}N}}(\mathbf{I}=\mathbf{0}) + \mathbf{f}_{\mathbf{ar{K}N}}(\mathbf{I}=\mathbf{1})ig]$$

threshold region and subthreshold extrapolation:

 $\Lambda(1405)$: $\bar{\mathbf{K}}\mathbf{N}$ $(\mathbf{I}=\mathbf{0})$ quasibound state embedded in the $\pi\Sigma$ continuum

complex scattering length (including Coulomb corrections)

$${\bf Re}~{\bf a}({\bf K}^{-}{\bf p}) = -0.65 \pm 0.10~{\bf fm}$$

$${
m Im}\, {
m a}({
m K}^{-}{
m p}) = 0.81 \pm 0.15 \ {
m fm}$$

$\mathbf{K}^{-}\mathbf{n}$ SCATTERING AMPLITUDE

$$f(K^-n) = f_{\mathbf{\bar{K}N}}(I=1)$$

threshold region and subthreshold extrapolation

complex scattering length

$$\mathbf{Re}\ \mathbf{a(K^-n)} = \mathbf{0.57^{+0.1}_{-0.2}}\ \mathbf{fm}$$

$${
m Im}~{
m a}({
m K}^{-}{
m n}) = 0.72^{+0.3}_{-0.4}~{
m fm}$$

Implications & Comments

- ullet $\mathbf{K}^{-}\mathbf{p}$ scattering length more accurately determined than $\mathbf{K}^{-}\mathbf{n}$ (SIDDHARTA constraints vs. uncertainties in $\mathbf{I}=\mathbf{1}$ channels)
- ullet Kaonic deuterium measurements important for providing further constraints on $\mathbf{K}^{-}\mathbf{n}$ interaction
- \bigcirc B = 2 systems key issue:

$$\mathbf{\bar{K}NN} \to \mathbf{YN}$$

absorption into non-mesonic hyperon - nucleon final states

Repulsive short-distance $\Lambda^*(uds) N$ interaction?

PART 2.

The SIGMA TERM and STRANGENESS in the NUCLEON

- Mass and scalar density of quarks in the nucleon
- Pion nucleon phase shifts and sigma term
- Chiral extrapolations and Lattice QCD
- Implications: chiral condensate in a nuclear medium

MASS of the NUCLEON: **LATTICE QCD + CHIRAL PERTURBATION THEORY**

$$\mathbf{M_N} = \langle \mathbf{N} | \frac{\beta(\mathbf{g})}{2\mathbf{g}} \mathbf{Tr}(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \sum_{\mathbf{i}} \mathbf{m_i} \, \mathbf{\bar{q}_i} \mathbf{q_i} | \mathbf{N} \rangle = \mathbf{M_0} + \Delta \mathbf{M}(\mathbf{m_\pi})$$

$$M_{N} = M_{0} - 4 c_{1} m_{\pi}^{2} - \frac{3 g_{A}^{2}}{32\pi f_{\pi}^{2}} m_{\pi}^{3}$$

$$p^{3} \sqrt{\pi} \sqrt{\pi} \sqrt{\pi}$$

$$+ \left[4 e_{1}^{r}(\lambda) + \frac{3 c_{2}}{128\pi^{2} f_{\pi}^{2}} - \frac{3 g_{A}^{2}}{64\pi^{2} f_{\pi}^{2} M_{0}} - \frac{3}{32\pi^{2} f_{\pi}^{2}} \left(\frac{g_{A}^{2}}{M_{0}} - 8 c_{1} + c_{2} + 4 c_{3} \right) \ln \frac{m_{\pi}}{\lambda} \right] m_{\pi}^{4}$$

$$+ \frac{3 g_{A}^{2}}{256\pi f_{\pi}^{2} M_{0}^{2}} m_{\pi}^{5} + \mathcal{O}(m_{\pi}^{6})$$

HADRON MASSES from LATTICE QCD

Full QCD with 2+1 flavors and physical quark masses

pseudoscalar mesons

S. Aoki et al. Phys. Rev. D 79 (2009) 034503 Phys. Rev. D 81 (2010) 074503

SIGMA TERMS

Pion-nucleon **sigma term**:

$$\sigma_{\mathbf{N}} = \mathbf{\bar{m}} \langle \mathbf{N} | \mathbf{\bar{u}u} + \mathbf{\bar{d}d} | \mathbf{N} \rangle = \mathbf{\bar{m}} \frac{\partial \mathbf{M_N}}{\partial \mathbf{\bar{m}}} \simeq \mathbf{m_\pi^2} \frac{\partial \mathbf{M_N}}{\partial \mathbf{m_\pi^2}} \quad \left(\mathbf{\bar{m}} = \frac{\mathbf{m_u} + \mathbf{m_d}}{2} \right)$$

Previous status:

from chiral interpolation using older lattice data

> M. Procura et al. Phys. Rev. D73 (2006) 114510

$$\sigma_{\mathbf{N}} = \mathbf{49} \pm \mathbf{6} \,\, \mathbf{MeV}$$

from pion-nucleon data extrapolated to Cheng-Dashen p.

$$egin{aligned} \sigma_{\mathbf{N}}^{\mathbf{emp}} = \ \mathbf{45} \pm \mathbf{8} \ \mathbf{MeV} \end{aligned}$$

$${
m m}_{\pi}^{f 2} \ [{
m GeV}^{f 2}]$$

Strangeness content:

$$\sigma_{\mathbf{N}} = rac{\langle \mathbf{N} | \mathbf{ar{u}u} + \mathbf{ar{d}d} - \mathbf{2ar{s}s} | \mathbf{N}
angle}{\mathbf{1} - \mathbf{y}}$$

$$y = \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle} \simeq 1 - \frac{\bar{m}}{m_s} \frac{M_\Xi + M_\Sigma - 2\,M_N}{\sigma_N} \sim 0.2 - 0.3$$
 ... but with large uncomparison assuming flavour SU(3) symmetry
$$\frac{\text{B. Borasoy, U.-G. Ann. of Phys. 254 (1)}}{\sigma_N} \sim 0.2 - 0.3$$

... but with large uncertainties

B. Borasoy, U.-G. Meißner Ann. of Phys. 254 (1997) 192

SIGMA TERMS ... more recent

Combined analysis of baryon octet (and decuplet)

$$\sigma_{\mathbf{N}} = \mathbf{47}(\mathbf{9})(\mathbf{1})(\mathbf{3}) \, \mathbf{MeV}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \qquad (chiral extrap.)$$
(lattice artifacts)

- consistent with earlier results and with phenomenology
- Strange quark contribution

$$\sigma_{\mathbf{Ns}} = \mathbf{m_s} \langle \mathbf{N} | \mathbf{\bar{s}s} | \mathbf{N} \rangle = \mathbf{m_s} \frac{\partial \mathbf{M_N}}{\partial \mathbf{m_s}}$$

R.D. Young, A.W. Thomas Phys. Rev. D81 (2010) 014503

much smaller than previously expected ! $\mathbf{y} \sim (\mathbf{5} \pm \mathbf{4}) \cdot \mathbf{10^{-2}}$

$$\mathbf{y} \sim (\mathbf{5} \pm \mathbf{4}) \cdot \mathbf{10^{-2}}$$

SIGMA TERM ... contd.

M. M. Pavan, I. I. Strakovsky, R. L. Workman, R. A. Arndt, PiN Newslett. 16, 110-115 (2002)

updated pion-nucleon phase shift analysis:

$$\sigma_{\mathbf{N}} = \mathbf{64} \pm \mathbf{7} \ \mathbf{MeV} \ !$$

lacktriangle covariant chiral perturbation theory with explicit $oldsymbol{\Delta}(\mathbf{1232})$

J.M. Alarcón, J. Martin Camalich, J.A. Oller; arXiv:1110.3797 [hep-ph]

SIGMA TERM ... contd.

Update of lattice QCD results and chiral extrapolations

G. Bali et al. (QCDSF); arXiv:1110.3797 [hep-ph]

$$\sigma_{\mathbf{N}} = \mathbf{38} \pm \mathbf{12} \ \mathbf{MeV}$$

 Very small scalar strange sea component in the nucleon

A. Simke, MFM Lutz; arXiv:1111.0238 [hep-ph]

Covariant SU(3) x SU(3) chiral perturbation theory to NNNLO with octet and decuplet baryons

$$\sigma_{
m N} \sim 40 \,\, {
m MeV}$$

CHIRAL CONDENSATE at finite BARYON DENSITY

- Order parameter of spontaneously broken chiral symmetry in QCD
- Hellmann Feynman theorem: $\langle \Psi | \bar{\mathbf{q}} \mathbf{q} | \Psi \rangle = \langle \Psi | \frac{\partial \mathcal{H}_{\mathbf{QCD}}}{\partial \mathbf{m_q}} | \Psi \rangle = \frac{\partial \mathcal{E}(\mathbf{m_q}; \rho)}{\partial \mathbf{m_q}}$

$$\mathbf{m_q} \frac{\partial \mathbf{M_N}}{\partial \mathbf{m_q}}$$

in-medium chiral effective field theory

$$rac{\langle ar{\mathbf{q}} \mathbf{q}
angle_{
ho}}{\langle ar{\mathbf{q}} \mathbf{q}
angle_{\mathbf{0}}} = \mathbf{1} - rac{
ho}{\mathbf{f_{\pi}^2}} \left[rac{ar{\sigma_{\mathbf{N}}}}{\mathbf{m_{\pi}^2}} \left(\mathbf{1} - rac{\mathbf{3} \, \mathbf{p_{F}^2}}{\mathbf{10} \, \mathbf{M_{\mathbf{N}}^2}} + \ldots
ight) + rac{\partial}{\partial \mathbf{m_{\pi}^2}} \left(rac{\mathbf{E_{int}}(\mathbf{p_F})}{\mathbf{A}}
ight)
ight]$$

(free) Fermi gas of nucleons

nuclear interactions (dependence on pion mass)

why the **SIGMA TERM** is so important: DENSITY DEPENDENCE of **CHIRAL CONDENSATE**

In-medium
Chiral
Effective
Field Theory

(NLO 3-loop)

constrained by realistic nuclear equation of state

N. Kaiser, Ph. de Homont, W.W. Phys. Rev. C 77 (2008) 025204

- Substantial change of symmetry breaking scenario between chiral limit $m_q=0$ and physical quark mass $m_q\sim 5\,MeV$
- Nuclear Physics would be very different in the chiral limit!

NEUTRON MATTER

• In-medium chiral effective field theory (3-loop) with resummation of short distance contact terms (large nn scattering length, $a_{\rm s}=19~{
m fm})$

N. Kaiser, Nucl. Phys. A 860 (2011) 370

perfect agreement with sophisticated many-body calculations

Outlook:

New Constraints from NEUTRON STARS

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Nature, Oct. 28, 2010

direct measurement of neutron star mass from increase in travel time near companion

J1614-2230 most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 M_{sun})

heaviest neutron star with 1.97±0.04 M_{sun}

News from NEUTRON STARS

NEUTRON STAR MATTER

Equation of State

B. Röttgers, W.W. (2011)

Prog. Part. Nucl. Phys. (2012) in print

Including new neutron star constraints plus
 Chiral Effective Field Theory at lower density

SUMMARY

- New
 - consistent analysis of $\bar{\mathbf{K}}\mathbf{N}$ threshold physics and scattering data based on chiral SU(3) effective Lagrangian at next-to-leading order
- **New** evaluation of K^-p scattering length:

$${f a}({f K}^-{f p}) = -0.65 + 0.81\,{f i}\ \ [{f fm}]\ \ \ \mbox{(~~15~\% accuracy)}$$

deduced:

$${f a}({f K}^-{f n}) \simeq {f 0.6} + {f 0.7} \; {f i} \; \; {f [fm]} \; \; {\sf (less\ accurate)}$$

- ullet Need kaonic deuterium to complete $ar{\mathbf{K}}\mathbf{N}$ and set constraints for $ar{\mathbf{K}}\mathbf{N}\mathbf{N}$
- Nucleon **sigma term**:
 Lattice QCD continuously improving towards $\sigma_{
 m N} \sim 40\,{
 m MeV}$ Very small sea of strange quarks in the nucleon
- New constraints from two-solar-mass neutron star and window of n-star radii:
 - conventional EoS works best kaon condensate ruled out

