Experimental study of a K-pp bound state by using the $d(\pi^+, K^+)$ reaction.

Y. Ichikawa for the J-PARC E27 collaboration.

Kyoto University, JAEA, email: yudai@scphys.kyoto-u.ac.jp

Abstract

An experimental search for the K-pp bound state, which is considered the simplest kaonic nucleus, is performed by using the $d(\pi^+, K^+)$ reaction at J-PARC K1.8 beam line (J-PARC E27 experiment). A pilot run was carried out in June, 2012. The missing-mass spectrum of this reaction studied of the beam momentum of 1.7 GeV/c, which allows the production of $\Lambda(1405)$, has been obtained for the first time and a significant peak shift by ~40 MeV was observed in the Y* region. In a preliminary proton-coincidence analysis, a sharp spike due to the Σ N- Λ N coupling and a broad enhancement around 2.3 GeV/c², which might be attributed to the K⁻pp bound state, are clearly observed.

Physics motivation

➤ Nuclear kaon bound state

- The deeply bound state by strong interaction.
- Strong attraction of the I = 0 KN interaction ($\overline{\text{KN}}^{I=0}$) plays an important role in nuclear kaon bound state.

$\succ K^{-}pp$ nuclear bound state

[8] A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804 (2008) 197

A. Doté, T. Hyodo, W. Weise, Phys. Rev. C 79 (2009) 014003.

- The simplest nuclear kaon bound state.
- Theoretical prediction of B.E and Γ depend on the \overline{KN} interaction and calculation method. A. Gal/Nuclear Phys A 914 270-279(2013) Calculated K^-pp binding energies B and widths Γ (in MeV).

	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]
\overline{B}	16	17–23	9–16	48	50-70	60–95	40–80
Γ	41	40–70	34–46	61	90-110	45–80	40-85
r, A. Gal, E.Z. Liverts, Phys. Lett. B 712 (2012) 132.			[9] Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124 (2010) 533.[10] T. Yamazaki, Y. Akaishi, Phys. Lett. B 535 (2002) 70.			[12] Y. Ikeda, T. Sato, Phys. Rev. C 76 (2007) 035203;Y. Ikeda, T. Sato, Phys. Rev. C 79 (2009) 035201.	

[11] N.V. Shevchenko, A. Gal, J. Mareš, Phys. Rev. Lett. 98 (2007) 082301

\triangleright Previous experiment of K-pp bound state

FINUDA experiment DISTO experiment $p + p @ T_p = 2.85 \text{ GeV}$ Stopped K⁻ on ^{6,7}Li and ¹²C Reaction $115^{+5}_{-5}(stat)^{+3}_{-4}(syst)$ MeV $103 \pm 3(stat) \pm 5(sys)$ MeV B.E $64^{+14}_{-11}(stat)^{+2}_{-3}(syst)$ MeV Width $118 \pm 8(stat) \pm 10(sys)$ MeV 2.2 2.25 2.3 2.35 2. M.Agnello et al T.Yamazaki et al., PRH 94, 212303 (2005) PRL 104, 132502 (2010) p-∆ invariant mass [GeV/c²]

J-PARC E27 experiment

\rightarrow d(π^+ , K⁺)X reaction at p_{π}= 1.7 GeV/c

- K^-pp bound state is produced through the $\Lambda(1405)$ as a doorway.
- The binding energy and decay width of K-pp is measured in the missing mass spectroscopy at J-PARC K1.8 beam line.
- There are many background from quasi-free hyperon production.
- The production cross section of K^-pp will be small.

► J-PARC K1.8 beam line

OK1.8 beam line spectrometer

- The momentum resolution is $\sim 0.1\%$ (FWHM).
- OSuperconducting Kaon Spectrometer (SKS)
- Large Acceptance ~100msr.
- Good momentum resolution ~0.2%(FWHM).

ORange counter Array (RCA)

- 6units, 5 layers (1+2+2+5+2cm) of plastic scintillator.
- TOF: 50cm, coverage angle is 39° to 122°.
- Geometrical coverage ~26%. -Momentum coverage for proton:300~800MeV/c.

Missing Mass MM(K) [GeV/c2]

 $\pi^+ + n -> \Lambda(1405) + K^+$

Y.Akaishi and T.Yamazaki.

<Simulation>

Phys. Rev. C 76 045201 (2007)

Black: all

components

K⁻pp

 $\Lambda(1405) + p -> K^{-}pp$

[13] S. Wycech, A.M. Green, Phys. Rev. C 79 (2009) 014001

> Proton coincidence method with RCA to suppress the B.G.

	meracine incured with recritic suppress the B.C.					
	QF - Back	Proton from				
	Proton from Y decay	Spectator proton	K-pp non mesonic decay			
Momentum	250~800MeV/c	<250MeV/c	250~800MeV/c			
Emission angle	Forward angle (<60°)	All angel (0~180°)	All angle (0~180°)			

- If we detect a proton at >60° (RC-2L, R), quasi-free B.G. are eliminated and the signal is enhanced!!
- If we detect two protons, QF B.G are eliminated more strongly!!

Result of pilot experiment

> Run summary

- Typical beam intensity of secondary pion beam was 3.0×10^6 per pulse(1.7s).
- \bigcirc p(π^+ , K⁺)X run at 1.7 GeV/c
- \bigcirc d(π^+ , K⁺)X run at 1.7 GeV/c
- 0.6 day; $\#(\pi^+) \sim 7.6 \times 10^9$
- 7.6 days; $\#(\pi^+) \sim 3.3 \times 10^{11}$

\triangleright p(π^+ , K⁺)X at 1.7 GeV/c data

- To check the contribution of proton in deuterium target.
- Σ^+ , $\Sigma(1385)^+$ and $Y\pi$ are produced and these cross sections are consistent with old data.
- Missing mass shape and position are good agreement between data and simulation($\chi^2=2.27$).

\geq d(π^+ , K⁺)X at 1.7 GeV/c data

- The missing mass spectrum of this reaction is measured for the first time.

<Inclusive analysis>

- In the quasi-free Λ / $\Sigma^{\rm o/+}$ region, the simulation almost reproduced the experimental spectrum, except for an enhancement around 2.13GeV/c².
 - ->It can be attributed to a cusp structure due to Σ N- Λ N (I=1/2) coupling.
- There is a significant (~40 MeV) shift in the Y* region compared with a simulation.

< Coincidence analysis with RCA>

- The obtained pion coincidence probability is almost consistent with a simulation for the quasi-free process considering the angular distributions and decay branch.

<P coincidence spectrum>

- Protons from quasi-free B.G. cannot be emitted in the side-ward angles ($>60^{\circ}$).
- -> By requiring the proton hit in the RC-2, the contribution of QF B.G. should be negligible.

Excess due to ΣN-ΛN cusp is clearly observed

OBroad enhancement is observed around 2.3GeV/c² →There is a emitting source

involving two nucleons (non QF) in high emission probability. →A possible explanation is K-pp.

<P coincidence probability >

- Hyperon masses are reconstructed from 2 protons analysis by using the RCA.

• $d(\pi^+, K^+)K^-pp$; $K^-pp \to Y + p$, $Y \to \pi + p (+ \pi)$ $M_Y^2 = (E_{\pi} + M_d - E_K - E_p)^2 - (p_{\pi} - p_K - p_p)^2$

Summary and future work

<Inclusive analysis>

- We have obtained $d(\pi^+, K^+)$ at 1.7 GeV/c for the first time.
- Together with the $p(\pi^+, K^+)$ data, the inclusive spectra are understandable except for Y* region.
- Σ N- Λ N cusp structure and peak shift of Y* are observed.

<Coincidence analysis>

- π detection probability is almost consistent between data and simulation.
- In proton coincidence, the Σ N- Λ N cusp structure and an broad enhancement around 2.3 GeV/c² are clearly observed.
- \rightarrow A possible explanation of the observed structure is K-pp.
- \rightarrow The detail studies on detection efficiencies are in progress.
- Hyperon masses are reconstructed from 2 protons analysis by using the RCA. <Future work>
- Apply the acceptance correction for protons which detected by RCA.