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Conclusion

Results 

Formalism

Anzats for scale dependent action for one flavour Quark-
meson (σ+π) model

UV: classical

IR: quantum�k=0[�] = �[�]

�k=⇤[�] = S[�]

• We have studied chiral phase transition under strong magnetic field by using the functional-RG method.!

• We have used a truncation which enable us to include the anisotropy of the neutral pion.!

• Even we include the anisotropy, the inverse magnetic catalysis is not realised.!

• Chiral model approach still miss the origin of the inverse magnetic catalysis.

Flow equations for Uk and Zk

Chiral phase transition in strong magnetic field

C. Wetterich (1993)

Chiral dynamics in a magnetic field from the functional renormalization group!
Kazuhiko Kamikado (RIKEN)!
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Scale (k) dependent effective action

Rk is arbitrary cutoff function. Our choices are

D. Litim (2000)
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Figure 1. The constituent quark mass at finite temperature and magnetic field from full FRG
(top), LPA (bottom, left) and the mean-field approximation (bottom, right). The vertical axis is
normalized to 1 at T = eB = 0.

mation scheme at eB = 0.5m2

⇡. Here T
pc

is determined from the peak of the temperature
derivative of the constituent quark mass. In the following subsections, we shall normalize
the temperature axis of every plot by T

pc

at eB = 0.5m2

⇡ to facilitate comparison of the
three approximations.

3.2 Pseudo-critical temperature

The constituent quark mass Mq is proportional to the bare pion decay constant (cf. (2.22))
and serves as an order parameter for the chiral symmetry breaking. In Fig. 1, we show the
temperature dependence of Mq in full FRG, LPA, and the mean-field approximation, with
varying external magnetic field. The three plots share the same qualitative features. At
low temperature, chiral symmetry is spontaneously broken and quarks acquire a mass of
order 300 MeV. At high temperature, chiral symmetry is effectively restored: the dynamical
mass drops to around 15% of the vacuum value at T = 2T

pc

. Since quarks have the current
mass, Mq never reaches zero even above T

pc

.
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Figure 3. Magnetic field dependence of the pseudo-critical temperatures from three approxima-
tions.

[43, 46]. The plots in Fig. 2 suggest that the inclusion of the wave function renormalization
alone does not resolve the discrepancy between the lattice QCD and chiral effective models.

In Fig. 3, we plot the pseudo-critical temperature versus magnetic field (in units of m2

⇡)
for each approximation. In all the three cases T

pc

rises monotonically with |eB|, and T
pc

in LPA and full FRG shows a milder increase than T
pc

in the mean-field approximation,
owing to the effect of mesonic fluctuations. This tendency is in discord with the previous
work with two light flavors [27], where T

pc

of LPA showed a stronger increase than that
of the mean field. We speculate that the difference comes from the absence of the charged
pions in our work.

Figure 3, somewhat unexpectedly, also shows that T
pc

from full FRG rises more steeply

than T
pc

of LPA and behaves like that of the mean-field approximation. In the next
subsection we will try to give a possible explanation to this trend based on the pion pole
mass behavior at finite temperature.

3.3 Meson modes under magnetic field

In the last subsection we discussed the dynamical quark mass and the chiral restoration
temperature. In what follows, we will present and discuss results related to the meson
properties. The neutral mesons change their nature under strong external magnetic field
because they are made of charged quarks. The most prominent feature is an anisotropy
of the neutral meson modes. To investigate this issue in a quantitative manner we have
calculated various observables related to the anisotropy of the neutral meson modes.

Let us begin with the wave function renormalization factors, which are the most central
objects in our beyond-LPA analysis. In Fig. 4 we show Zk and Z? at finite temperature
and external magnetic field. There one can observe several marked features:

(a) At high temperature, both Zk and Z? diminish substantially and become insensitive
to the magnetic field.

(b) Zk
increases sharply with |eB|.

(c) By contrast, Z?
decreases with |eB|. However Z? shows only weak dependence on

|eB| at all temperatures.
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Figure 5. Squared transverse velocity v2
? = Z?/Zk with varying external magnetic field. The

velocity is normalized by that at eB = 0.5m2
⇡.

deviates from 1 owing to the finite temperature effect. To see the effect of the external
magnetic field, it is convenient to normalize v2? by that at eB = 0.5m2

⇡. In Fig. 5 we show
the temperature dependence of v2? thus normalized for varying external magnetic field. For
all temperatures, the velocity decreases with eB. This behavior is consistent with previous
works that studied neutral mesons at T = 0 [10, 11, 55]. Our new finding here is that
v? has a strong temperature dependence: at high temperature (& T

pc

) even the magnetic
field as strong as 20m2

⇡ does not modify v2? significantly. This tendency can naturally be
understood by recalling the temperature dependence of Zk and Z? (cf. (a)). Therefore
the “dimensional reduction” of neutral mesons is unlikely to modify the nature of the chiral
crossover in a qualitative way.

In Fig. 6 (top), we show the renormalized pion masses obtained in full FRG. As re-
marked in section 2.4, the screening masses acquire a directional dependence in a strong
magnetic field.7 For comparison, in Fig. 6 (bottom) we also present the pion mass from
LPA. In all three cases, we observe that the neutral pion mass decreases in a magnetic field.
This trend is consistent with lattice simulations [45, 76], chiral perturbation theory [77–80],
and an analytical study [81].

Furthermore, by comparing full FRG with LPA we find that mk
⇡ and m?

⇡ grow more
steeply with T than m⇡ in LPA for T & T

pc

. This difference originates from the fact that
Zk and Z? decrease rapidly with T (cf. Fig. 4). Because of this rapid growth of the pion
pole mass in full FRG at high T , the mesonic contributions to the flow are suppressed as
compared to LPA. Therefore it is natural that in Fig. 3 the pseudo-critical temperature of
full FRG shows the same trend with the mean-field approximation rather than LPA.

In Fig. 7, we present temperature dependence of the renormalized longitudinal and
transverse pion decay constants (see (2.26) and (2.27) for their definitions). At each tem-
perature, both pion decay constants increase with eB, but with different rates. Because Zk

increases with the external magnetic field, it enhances the increase of fbare

⇡ . On the other

7Within our truncation the pole mass and the longitudinal screening mass are identical, although they
can be different in QCD at finite temperature.
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Figure 9. The phase diagram of QCD in the B−T plane, determined from the renormalized chiral
condensate ūur+ d̄dr (upper left panel), the renormalized chiral susceptibility χr

u+χ
r
d (upper right)

and the strange quark number susceptibility cs2 (lower panel).

9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,
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Figure 3. The renormalized up quark condensate (upper left panel), its susceptibility (upper right
panel), and the strange susceptibility (lower panel) as functions of T and Nb on our Nt = 6 lattices
(note that viewpoints are different in order to better show the interesting structures in the particular
observables). Measurements are denoted by the blue points, while the red surface is the spline fit
to the data. The corresponding fit qualities are χ2/dof. ≈ 1.8, 1.5 and 1.2, respectively.

results of [37] at a couple of points, see appendix D. Since we find a perfect agreement,

we conclude that we are left with three possible reasons for the discrepancy. First, the

lattice spacing of [37] is larger, a ≈ 0.3 fm, and also an unimproved action is used, so

lattice discretization errors may be significant. Second, the present study uses Nf = 2 + 1

flavors as opposed to the Nf = 2 of [37], and the pseudocritical temperature is known to

depend on the number of flavors [57], which may also introduce systematic differences in

the dependence on the external field. Third, the quark masses of [37] are larger than in

the present study, which can also cause drastic changes in thermodynamics — for example

the nature of the transition at B = 0 depends very strongly (and non-monotonically) on

the quark masses.

On closer inspection, the differences between our results and those of [37] can actually

be traced back to the behavior of the chiral condensate as a function of B for a given

temperature. While the authors of [37] observed that at any temperature the condensate

increases with B, we find that this dependence is more complex, see the left panel of figure 4

for our Nt = 6 results. At T = 155MeV, which is just above the zero-field pseudocritical

temperature, the bare condensate decreases by a factor of 2 between Nb = 0 and Nb = 70.

As the temperature is reduced the ūu(Nb) function starts to develop a maximum, clearly
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Figure 4. Parallel (left) and perpendicular (right) wave function renormalization factors of mesons.

These features can be understood, at least qualitatively, from the flow equations in (2.7) and
(2.8). First of all, we remark that the meson contributions to @kZ

k
k and @kZ?

k are suppressed
at all temperatures, except for the vicinity of T

pc

. (We have checked this explicitly by
numerically integrating the flow equation.) The reason is as follows. In the meson loop
diagram (cf. Fig. 10), both � and ⇡ are circulating around the loop. Since � is always heavy
(except near T

pc

) and ⇡ also gets heavy at high temperature, the meson loop contribution
turns out to be always suppressed as compared to the fermion loop contribution. Therefore
the flows of Zk and Z? are mostly dominated by the fermionic contributions in (2.7) and
(2.8). Now we are ready to interpret (a)–(c) above.

At high temperature, fermions acquire a large screening mass q
4

⇠ ⇡T due to the
antiperiodic boundary condition along the x4 direction. Then the fermionic contribution
to (2.7) and (2.8) is strongly suppressed and consequently Zk

k and Z?
k almost cease to flow.

Indeed, Z?
k=0

' 0.265 at T/T
pc

= 2, which is close to the initial value, Z?
k=⇤

= 0.236. Thus
we expect that both Zk and Z? tend to their initial values at sufficiently high temperature.
This should be true in a magnetic field, too, as long as

p
eB does not exceed the screening

scale ⇠ ⇡T . This is an intuitive explanation to (a).
As for (b), the increase of Zk is most likely attributable to the enhancement of the

lowest Landau level (n = 0) contribution in (2.8). The contribution from the higher Landau
levels is clearly suppressed for large |eB| and they decouple from the flow of Zk

k .
Let us finally turn to (c). The weak dependence of Z? on the magnetic field, in stark

contrast to Zk, is quite natural in view of the fact that the flow of Z?, (2.7), has no explicit
dependence on |eB|. (This fact itself is a result of complicated nontrivial cancellations of
|eB|-dependence among infinite series, as demonstrated in the appendix B.2.1.) The slight
decrease of Z? as a function of |eB| is more subtle; we speculate that this tendency origi-
nates from the enhancement of the constituent quark mass in a magnetic field (cf. Fig. 1).
Because ⇢k grows with |eB| owing to the magnetic catalysis, the fermionic contribution in
(2.7) is suppressed, and the growth of Z?

k toward k = 0 is slowed down. Thus the decrease
of Z?

k=0

seems to be a natural consequence of large |eB|.
The ratio of Z? to Zk gives the squared transverse velocity, v2?. Even at eB = 0, v2?

– 15 –

ūu
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