
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 General U(1) symmetric Lagrangian density : 

 

 

 

 
  

 

 GL potential : 

 

 

 

 

 

 

 

 

 

 FF-type case (e.g., DCDW)  
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≫ time reversal symmetry :  𝑎3, 𝑎 5, 𝑎5 > 0  

≫ higher-order time-derivatives :  𝑎 5 = 𝑎 6 = 0  

≫ normarization :  𝑎4 = 1  

≫ explicit breaking term :  ℎ = 0 (chiral limit) 

The GL expansion is taken up to 6th order in space-time derivatives (𝜕𝑡, 𝛻) and 

complex order- parameter field 𝜙(𝑥) in order to stabilize the potential when 

dealing with the modulating order-parameter. 

In non Lorentz invariant systems, 

the surface term, i.e., 1st-order time- 

derivative term with 𝜙 ≡ 𝜕𝑡𝜙, is allowed. 

Leutwyler (1994) 

The stationary conditions (gap equations) for 𝐪 and 𝚫 ; 

𝜕𝜈(𝜙1)

𝜕𝑞
= 𝑞∆2 𝑐 + 2𝑑𝑞2 + 𝑒∆2 = 0 

 𝜕𝜈(𝜙1)

𝜕Δ
= Δ 𝑎 + 𝑐𝑞2 + 𝑑𝑞4 + 2(𝑏 + 𝑒𝑞2)Δ2 + 3𝑓Δ4 = 0 

We first consider FF-type ground state. 

The GL potential for 𝜙1 reads 𝜈 𝜙1 = 𝑎Δ2 + 𝑏Δ4 + 𝑐𝑞2Δ2 + 𝑑𝑞4Δ2 + 𝑒𝑞2Δ4 + 𝑓Δ6, 

where the potential-stability requires 𝜈6𝑡ℎ 𝜙1 = 𝑑𝑞4Δ2 + 𝑒𝑞2Δ4 + 𝑓Δ6 > 0 , 

i.e., 𝑑 > 0 (𝑓 > 0) and 𝑑𝑓 − 𝑒2/4 > 0. 

Values of 𝑞 and Δ are determined from the potential 𝜈. 

Normal phase: 

Non-modulating phase: 

Modulating phase: 

𝑞 = Δ = 0 

𝑞 = 0, Δ ≠ 0 

𝑞 ≠ 0, Δ ≠ 0 

→ Δ2 =
−𝑏 ± 𝑏2 − 3𝑎𝑓

3𝑓
 

Under  𝑞2 = −(𝑐 + 𝑒Δ2)/2𝑑 , 

→ Δ2 = −
2(𝑐𝑒 − 2𝑏𝑑) ± 3 𝑐2 − 4𝑎𝑑 4𝑑𝑓 − 𝑒2 + 4(𝑐𝑒 − 2𝑏𝑑)2

3(4𝑑𝑓 − 𝑒2)
 

Under  𝑞 = 0 , 

 Under a specific coefficient set, the energetically favored phase is realized, where 

coefficients implicitly depend on thermodynamic environment. 
  

 Above all, we focus on the modulating phase with 𝜙1 and investigate the low-energy 

collective excitations on there. 

  Spontaneously Symmetry Breaking 

              in the inhomogeneous 𝝓𝟏-phase with finite 𝒒 and 𝚫 

 U(1) symmetry 

 Translation symmetry in z direction 

          

 

 

 

    ⇒  𝜙1 is invariant under 𝑞𝑠 𝑡, 𝑥 + 𝛼 𝑡, 𝑥 = 0. 
  

           ( i.e.,  Δ𝑒𝑖𝑞𝑧+𝑖 𝑞𝑠 𝑡, 𝑥 +𝛼 𝑡, 𝑥  ⟼  Δ𝑒𝑖𝑞𝑧 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 Spatial rotation symmetry (x-axis and y-axis rotations) 

 

 

 
 

  

     However… 
  

        ⇒ The global operation, i.e., NG mode 𝛼 𝑡, 𝑥 , can completely 

               describe the local operation 𝜃 𝑡, 𝑥 . 
  

        ⇒ 𝜃 𝑡, 𝑥 : Redundant NG mode  

  
 

 

  A single NG mode in 𝜙1-phase with FF-type condensate 

 

 Δ𝑒𝑖𝑞𝑧  ⟼  Δ𝑒𝑖𝑞 𝑧+𝑠 𝑡, 𝑥 +𝑖𝛼 𝑡, 𝑥  
 (𝛼 𝑡, 𝑥 : U(1) rotation, 𝑠 𝑡, 𝑥 : translation operation) 

Both symmetries are uniform and global. 

 Δ𝑒𝑖𝑞𝑧  ⟼  Δ𝑒𝑖𝑞(𝑧cos𝜃 𝑡, 𝑥 +𝑦sin𝜃 𝑡, 𝑥 ) 
 (𝜃 𝑡, 𝑥 : angle operator, Rotation symmetry is nonuniform in space ) 

Low-Manohar (2002) 

Watanabe-Murayama(2013); Hayata-Hidaka(2013)  

𝑑𝑖𝑚 𝐺 𝐻 = 1  

G  

H 

G/H [𝛼, 𝑠, 𝜃] 
       𝑞𝑠 + 𝛼 = 0 
    (locking symmetry) 
       

                                 etc. 

𝑞𝑠 + 𝛼 ≠ 0 → 𝛼 

(𝜃 : redundant) 

Then, what kind of dispersion does the zero mode 𝛼 have? 

⇒ We investigate the low-energy excitations on 𝜙1-phase. 

   Fluctuations on inhomogeneous phases 

 We consider fluctuations on the FF-type ground state. 

 

 

 

 

 

 

 

 

 

 

 

 

 Excited state: 

 

 

 

 

 

 Euler-Lagrange equations for 𝛼(𝑥) and 𝛿(𝑥): 
 

 

 

 

 

 
 

 

 In the non-modulating case with 𝑞 = 0: 

 

 

 

 

 
 

 The corresponding dispersion relations:  

 

 

 

𝜙(𝑥) = Δ + 𝛿(𝑥) 𝑒𝑖𝑞𝑧+𝑖𝛼(𝑥) 

𝛼(𝑥) : phase-fluctuation (phason) field 

𝛿 𝑥  : amplitude-fluctuation (amplitudon) field 

𝑥 : abbreviated space-time variable 𝑡, 𝑥, 𝑦, 𝑧  

𝛿𝐿

𝛿𝛼(𝑥)
=

𝛿𝜙(𝑥)

𝛿𝛼(𝑥)

𝛿𝐿

𝛿𝜙(𝑥)
+
𝛿𝜙∗(𝑥)

𝛿𝛼(𝑥)

𝛿𝐿

𝛿𝜙∗(𝑥)
= 0 

 

𝛿𝐿

𝛿𝛿(𝑥)
=

𝛿𝜙(𝑥)

𝛿𝛿(𝑥)

𝛿𝐿

𝛿𝜙(𝑥)
+
𝛿𝜙∗(𝑥)

𝛿𝛿(𝑥)

𝛿𝐿

𝛿𝜙∗(𝑥)
= 0 

(GL action: 𝐿 =  𝑑4𝑥 ℒ) 

𝜔𝛼 𝑘 = 𝑐 + 𝑒Δ2|𝑘| + 𝑂 |𝑘|3     Goldstone (phason) mode 
 
 

𝜔𝛿 𝑘 = 𝑚 +
𝑐+𝑒Δ2

2𝑚
|𝑘|2 + 𝑂 |𝑘|4     Higgs (amplitudon) mode 

𝑞 ≠ 0 

In the modulating phase with 𝑞 ≠ 0, the Eular-Lagrange equations for 𝛼(𝑥) and 𝛿(𝑥) : 

(up to the linear order in fluctuations in the Fourier spaces 𝑘 = (𝜔, 𝑘)) 

𝐺𝑘𝜔
2 − 𝐸𝑘𝜔 − 𝐶𝑘 2𝑖 𝐴𝑘 + 𝐵𝑘𝜔 + 𝐹𝑘𝜔

2

−2𝑖 𝐴𝑘 + 𝐵𝑘𝜔 + 𝐹𝑘𝜔
2 𝐺𝑘𝜔

2 − 𝐸𝑘𝜔 − 𝐶𝑘 −𝑀2

Δ𝛼(𝑘)

𝛿(𝑘)
= 0 

⇒  𝛼-𝛿 mixing     Fluctuations 𝛼 and 𝛿 are coupled. 

 Dispersion relations for the above eigen modes: 

𝑎3 = 𝑎5 = 𝑎6 = 0   (for simplicity) 𝜕𝑡
2 − 𝑐 + 𝑒∆2 𝛻2 + 𝑑(𝛻2)2 𝛼(𝑥) = 0 

 

𝜕𝑡
2 − 𝑐 + 𝑒∆2 𝛻2 + 𝑑(𝛻2)2+𝑚2 𝛿(𝑥) = 0 

 ( mass gap; 𝑚2 = 4 𝑏 + 3𝑓∆2 ∆2 ) 

(⇒ 𝜔 ∝ |𝑘|) 

𝐴𝑘 = 𝑞(2𝑑𝑘2 + 𝑒∆2)𝑘𝑧 

𝐵𝑘 = −𝑎3 − 𝑎5(𝑘 + 𝑞2) 

𝐶𝑘 = 4𝑑𝑞2𝑘  𝑧
2 + 𝑑(𝑘2)2 

𝐸𝑘 = −4𝑎5𝑞𝑘𝑧 

𝐹𝑘 = −𝑎6q𝑘𝑧 

𝐺𝑘 = 1 + 𝑎6(𝑘 + 𝑞2) 
𝑀2 = 4(𝑏 + 𝑒𝑞2 + 3𝑓∆2)∆2 

𝜔2 =  
 　  　𝑣  𝑘𝑡

2  + 𝑣  𝑧−
2   𝑘  𝑧

2 + 𝑂(𝑘4)𝑡
2

 𝑀2 + 𝑣  𝑘𝑡
2  + 𝑣  𝑧+

2   𝑘  𝑧
2 + 𝑂(𝑘4)𝑡

2
  

⇒   𝛼 𝑡, 𝑥    (out-of-phase 𝑈(1) rotation) 

𝑘2 =  𝑘  + 𝑘  𝑦
2

𝑥
2 + 𝑘  𝑧

2 = 𝑘  + 𝑘  𝑧
2

𝑡
2  

 

𝑣  𝑡
2 = 𝑐 + 2𝑑𝑞2 + 𝑒∆2= 0 

 

𝑣  𝑧±
2   = 4𝑞2(𝑑𝑀2 ± 𝑒2∆4)/𝑀2 

where 

 (Gap eq.) 

𝑞 → 𝑞0 + 𝛿𝑞 

Δ → Δ0 + 𝛿Δ 

𝛿∆= −
𝑒𝑞0∆0

2 𝑏+𝑒𝑞  0
2 +3𝑓∆  0

2 𝛿𝑞   (from Gap eq.) 

> 0 ⇒   𝛿𝑞 > 0 →  𝛿Δ < 0 

⇒  ∆-shrink Zero mode direction is changed 

from minimal circle to minimal spiral. 

where 

𝜔2 = 𝑣  𝑧−
2   𝑘  𝑧

2 + 𝑑(𝑘  𝑡
2 )2+ ⋯ 

 𝑧 direction: linear dispersion 
 

 𝑥-𝑦 direction: quadratic dispersion  

Direction-dependent dispersion 

U(1)-phonon mode 

  To clarify the low-energy effective degrees of freedom in inhomogeneous phases 
 

 

  To understand fluctuations or NG excitations on density wave ground states 

  SU(2)L⊗SU(2)R chiral model (or chiral O(4) model)  

 

    
 

 

  

 

 

 

  Interaction between NG modes at tree level 

Missions 

  Coupling of inner and outer spaces is realized: U(1)-Translation locking symmetry 
 

  NG mode identified as out-of-phase U(1) rotation emerged from 𝜙1-phase 
 

  α-δ mixing mode is an Eigenmode in FF-type modulating phase 
 

  Zero-mode moves in a direction toward symmetry restoration when δ𝑞 > 0 on minimal spiral 
 

  NG mode has an anisotropic dispersion relation  (𝑥-𝑦: Quadratic, 𝑧: Linear) 

⇒ Effective field theory constructed from coset space G/H (NG modes) 

Results and Remarks 

 (inner and spacetime symmetries are locked) 

Ongoing work and Prospects 

 FF-type ground state (𝜙1 = Δexp (𝑖𝑞𝑧); DCDW)  Flavor-Translation locking 

 LO-type ground state (𝜙2 = Δsin (𝑞𝑧); RKC)  Only phonon(phason)-like mode? 

 Possible general ground state (𝜙𝐹𝐹+𝐿𝑂 = λ
2 𝜈

1+ 𝜈
𝑠𝑛(

2𝜆𝑥

1+ 𝜈
; 𝜈); DCDW+RKC) 

 

 

 

 

 
 

 

 

  Construction of the low-energy effective theory for chiral inhomogeneous phases 
 

  Finite temperature arguments 

   
 

 

  Phenomenological implications 

             

⇒ Nonuniform chiral condensate  𝜓𝑒𝑖𝛾5𝜏3𝑞𝑧𝜓𝑞  

e.g., Coupling of inhomogeneous phases (e.g., DCDW) and magnetic fields 

⇒ longitudinal and transverse excitations may be possible along the magnetic field.  (Spin wave-like?) 

Besides, experimental signals of chiral inhomogeneous phases in HICs, e.g., J-PARC, etc. 

1. INTRODUCTION 2. GINZBURG-LANDAU ANALYSIS 3. SSB AND NG MODES 

4. COLLECTIVE EXCITATIONS 

 

 
5. REMARKS AND PROSPECTS 

  If such inhomogeneous phases actually exist, an elementary excitation on the 

ground state there should be observed experimentally. Then, what is the physical 

degrees of freedom emerging from the inhomogeneous phase? 
 

⇒ Therefore, we investigate the low-energy collective excitations, i.e., Nambu- 

     Goldstone excitations, on the inhomogeneous phase in the vicinity of LP. 

⇒ This may lead to insights for probing the intermediate-density regime in QCD. 

⇒ This also would contribute to the development of Nambu-Goldstone theorem in non-Lorentz 

      invariant systems because both internal and space-time symmetries can be coupled in the 

      inhomogeneous phase. 

NG modes on inhomogeneous phases 

Tong-Gyu Lee 

(Kochi Univ. and JAEA) 
 

 

with E. Nakano (Kochi Univ.), Y. Tsue (Kochi Univ.), and T. Tatsumi (Kyoto Univ.) 

Motivation 

Two unique linear combinations 

・𝑞𝑠 𝑡, 𝑥 + 𝛼 𝑡, 𝑥 = 0 →  H  (Unbroken symmetry) 
 

               𝑼(1)-translation locking symmetry 
 

・𝑞𝑠 𝑡, 𝑥 + 𝛼 𝑡, 𝑥 ≠ 0 →  G/H  (Broken symmetry) 

NG mode 𝛼 𝑡, 𝑥  ≡ 𝑞𝑠 𝑡, 𝑥 + 𝛼 𝑡, 𝑥  

which is described by out-of-phase operation;  𝑞𝑠 𝑡, 𝑥 + 𝛼 𝑡, 𝑥 ≠ 0 

⇒ Based on zero temperature arguments due to Landau-Peierls instability [4] 

Possibility of Kosterlitz-Thouless-like transition,  stability of 2-D modulation, etc. 

(1-D modulation instability against thermal fluctuations) 

e.g., Carignano-Buballa (2012) Kosterlitz-Thouless (1973) 
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