Evolution from Hot Neutron Stars with Hadron-Quark Crossover

Kota Masuda(U. Tokyo / RIKEN), Tetsuo Hatsuda(RIKEN) and Tatsuyuki Takatsuka(RIKEN)

Abstract

Using the idea of smooth crossover from hadronic matter to quark matter, it was already shown by the authors that 2 solarmass neutron star can be sustained by strongly interacting quark matter. In this poster, we extend this idea to finite temperature and consider neutron star evolution with crossover. We show

- (I) temperature profile has a peak due to the existence of quark matter inside neutron stars, and
- (II) vector interaction plays an important role for determining whether neutron stars become black hole through evolution.

Introduction [1,2,3]

•Recent discovery [1] In 2010, NS(PSRJ1614-2230) with $(1.97\pm0.04)\,M_\odot$ was found through Shapiro delay .

Key questions

We can study high dense matter through NSs.

,			
Observations	Theory		
Mass	EOS through TOV equation		
Cooling	Superfluid / conductivity		

At T=0 MeV [2,3]

ullet Are there any EOS which can explain $2M_{\odot}$ NS?

At T≠0 MeV

How do hot NSs impose new constraints on dense matter?

Hadronic EOS [4]

Quark EOS [5]

We use (2+1)-flavor NJL with β -equilibrium and charge neutrality.

$$L_{NJL} = \bar{q}(i\partial - m)q + \frac{G_s}{2} \sum_{a=0}^{8} [(\bar{q}\lambda^a q)^2 + (\bar{q}i\gamma_5\lambda^a q)^2] - \frac{g_v}{2} [(\bar{q}\gamma_\mu q)^2] + (G_D[\det \bar{q}(1+\gamma_5)q + \text{h.c}]$$

mean field approximation

parameter [5]	$\Lambda({ m MeV})$	$G_s\Lambda^2$	$G_D\Lambda^5$	$m_{u,d}({ m MeV})$	$m_s({ m MeV})$
	631.4	3.67	9.29	5.5	135.7

Hadron-quark crossover for finite T

Hot NSs are composed of "supernova matter" characterized by constant entropy per baryon S and lepton fraction Y.

• Definition of EOS for supernova matter we hypothesis $\bar{\rho}$ and Γ do not depend on T.

$$P(\rho, T) = P_H(\rho, T) \times \frac{1 - \tanh\left(\frac{\rho - \bar{\rho}}{\Gamma}\right)}{2} + P_Q(\rho, T) \times \frac{1 + \tanh\left(\frac{\rho - \bar{\rho}}{\Gamma}\right)}{2}$$

thermodynamic relation

$$s(\rho, T) = s_H(\rho, T) \times \frac{1 - \tanh\left(\frac{\rho - \bar{\rho}}{\Gamma}\right)}{2} + s_Q(\rho, T) \times \frac{1 + \tanh\left(\frac{\rho - \bar{\rho}}{\Gamma}\right)}{2}$$

Results

1. Effects of crossover H-EOS: TNI2 $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$ M-R relation ρ -r, T-r relation $^{3.5}$

At the density where the effect of quark phase emerges, temperature profile has a peak.

2. Effects of vector interaction

 Universal repulsion among different flavors of vector interaction makes the effects of temperature and neutrino trapping on maximum mass smaller.

Summary

- By using crossover picture, EOS can become hard due to strongly interacting quark matter.
- Due to the color degree of freedom of quarks, temperature profile has a peak.
- The strength of vector interaction determines whether NSs becomes BH and whether accretion occurs partially.

Future works

- 1. Cooling from our crossover model.
- 2. Constraints on EOS from other observables. (Radius etc.)

References

[1]P. B. Demorest et al., Nature **467** (2004), 1081-1083

[2]K. Masuda, T. Hatsuda and T. Takatsuka, ApJ **764**, 12 (2013)

[3]K. Masuda, T. Hatsuda and T. Takatsuka, PTEP 073D01 (2013)

[4]T. Takatsuka, S. Nishizaki and J. Hiura, Prog. Theor. Phys. 92 (1994), 4.

[5]T. Hatsuda and T. Kunihiro, Physics Reports, **247** (1994), 221-367