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Introduction

We develop a method to determine accu-
rately the binding energy of the X(3872)
from lattice data for the DD* interaction. We
show that, because of the small difference be-
tween the neutral and charged components
of the X(3872), it is necessary to differen-
tiate them w1n the energy levels of the lat-
tice spectrum if one wishes to have a precise de-
termination of the the binding energy of the
X(3872). The analysis of the data requires the
use of coupled channels. Depending on the num-
ber of levels available and the size of the box we
determine the precision needed in the lattice en-
ergies to finally obtain a desired accuracy in the
binding energy.

The X(3872) in the
Lagrangian Lppyy = —#TT (Juj H)

Currents J, = (0,P)P — PO,P, J, =
(O V,)VY =V, 0, V7.

Breaking Parameters mg« = mjp = 800
MeV, msx = mg = 2050 MeV and
mi« = mysy = 3097 MeV, f = jr = 93
MeV, and f = fp = 165 MeV.

2 2 2 2
/y p— (ms* ) — —m%’ — (mS* ) — ﬂ;L
T g * mH’ T q = mj/w

Figure 1: Pointlike pseudos.-vector interaction.

Thus, the amplitude of the process
Vi(k)P(p) = Vo(k") Py (p'), is given by
Vig(s,t,0) = (s —w) €& (1)
Afif;
T=(1-VG) 'Vee (2)
For G, dim. regularization formula or cutoft

method can be used,

o d3q w1 + w9 1
Q<Qmam(2ﬂ)3 2W1 w9 (FM)Q——@U14—aQ)2%-ﬁE
(3)

V5 = (3871.6 — i0.001) MeV
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Probability of finding the ¢ ch. in the wave func.,

0.86 for D*D® — c.c,
0.124 for D*T D~ — c.c
and 0.016 for D*TD_ — c.c.

However (27)3/24(0); = ¢;:G; (wave function at
the origin) are nearly equal, and this usually en-
ters the evaluation of observables.

Formalism 1n finite volume
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where w; = \/m? + |¢ |? and the momentum ¢ is quantized as q; = Z%ﬁi, 7| = 2%T\/mi,
nfm + nzz + nzz —m,; and Ny,qp = q”g;jL (Symmetric box).
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Two channel case:
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Figure 2: Left: G(solid) and V~!(dashed) energy dependence of DT D*~ for Lm, = 2.0. Dotted lines are the free
energies; (a), (b) and right: L dependence of the energies for a single channel and two channels respectively.

The 1nverse problem

QCD lattice data can be used to determine bound states of the DD* system. We assume that
the lattice data are some discrete points on the energy trajectories (synthetic data). We want to
determine the potential and evaluate the pole position of the X(3872) in infinite volume. A set of
data of 5 points in a range of Lm, = [1.5, 3.5| for each level (four levels with n = 0 and 1) with
uncertainties, moving randomly by 1 MeV the centroid assigning an error of 2 MeV, are generated.
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Figure 3: Left: Fit to the data. Dots: synthetic data. Solid lines: with potential fitted. Right: Contour plot for the
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2 representing x? < x + 1. Points correspond to values of the parameters in the x? minimum. (Circle and grey

min
area: a1 and b1, Square and diagonal lined area: a2 and b2 and Diamond and vertical lined area: a3 and b3.)

Potential (six parameters to fit) :
Vs = @z = by (\/5— \/sth) - 4=1: DT™D* i=2: D’D*Y: { =3 : nondiagonal

The y? function is minimized. The binding energy is essentially independent of the choice of a.

Results

(B,P,AE,AC) a1 as as b1 bo b3 X2 Pole Mean Pole o

(4,5,2,1) -140.18 -112.08 -132.81 -0.310 0.074 0.012 2.32 3871.51  3871.49 0.07
(4,5,5,2) -140.18 -112.08 -132.81 -0.310 0.074 0.012 0.79 387151 3871.25 0.38
(4,3,2,1) -133.01 -131.92 -124.60 -0.242 0.048 -0.075 1.02 3871.44  3871.49 0.18
(4,3,5,2) -120.09 -98.19 -150.94  -0.377 -0.075 0.102 0.28 3871.41  3871.15 0.49
(2,5,2,1) 176.08 -154.11 -89.26 9.92 7.0l  -8.72 0259 3871.70 3871.47 0.30
(2,5,5,2) -158.49 -152.15 -103.23 4.56 6.58 -6.74 0.982 3871.34 3871.30 0.43
(2,3,2,1) -132.74 -176.62 -105.53 3.23 0.84 -3.36 0.074 3870.51 3870.48 0.61
(2,3,5,2) -226.57 -194.51 -32.74 31.81 13.28 -18.89 0.942 3869.49 3870.37 1.06

It is necessary to distinguish between the levels of DTD*~ and D°D*’. With errors in the data
of 5 MeV, one can obtain the binding energy with 1 MeV precision, and two levels are enough to
have an accurate value. To have a very high precision in the binding energy (~ 0.2 MeV), requires
high precision in the data. In addition, we can know about the nature of the X(3872). If the
X(3872) was genuine, we can generate it using a potential containing a CDD pole
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v/Scpp 20 MeV above the threshold, gocpp = 4620 MeV. Taking the two lower levels, we obtain
— 2?21 g? Gg; = 1— Z = 0.51. This tell us that the state has a large genuine component Z ~ 0.5.
3 2% =1 -7 =00T.

On the contrary, if V3, =V, ,,
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