Complex 2D Matrix Model and Its Application to Nc-dependence of Hadron Structures

Kanabu Nawa¹, Sho Ozaki², Hideko Nagahiro³, Daisuke Jido⁴, and Atsushi Hosaka⁵

¹RIKEN, ²Yonsei University, ³Nara Women's University, ⁴Tokyo Metropolitan University, ⁵RCNP

PTEP 083D01 (2013).

Abstract

We study the parameter dependence of the internal structure of resonance states.

The geometry with "exceptional points" on the complex-parameter space is useful to discuss the parameter dependence within real-parameter subspace. By applying the model to hadron physics, we examine the *Nc*-dependence of hadron structures from the geometry on the complex-*Nc* plane.

1.Introduction

How do characters of quantum states **change** with **variation of a parameter** which specifies the property of the system or

which specifies the property of the system or of the environment where the system is placed?

[L.D. Landau and E.M. Lifshitz]

 $|\psi_2(\lambda)\rangle$

2 level model :

 $|\phi_i\rangle$: eigenstates at $\lambda=0$, having clear characters.

 $\varepsilon_2(\lambda)$

 $\varepsilon_1(\lambda)$

Anticrossing

-"Nature Transiton"

 $|\psi_1(\lambda)\rangle$ and $|\psi_2(\lambda)\rangle$ exchange their characters at anticrossing point $\lambda=\lambda_t$.

How about "resonances"?

 $\varepsilon_1(\lambda)$ and $\varepsilon_2(\lambda)$ can move on complex-E plane !!!

*What is the simple criterion of nature transition for resonances?*How do poles move two-dimensionally on complex-E plane?

2.Complex 2D Matrix Model

biorthogonal representation: $|\phi\rangle \equiv |\phi\rangle$, $|\phi\rangle \equiv |\phi\rangle$, $|\phi\rangle \equiv |\phi\rangle$, $|\phi\rangle \equiv |\phi\rangle$ [N. Hokkyo, Prog. Theor. Phys. 33, 1116 (1965)]

$$\mathbf{H}(\lambda) = \begin{pmatrix} (\phi_{1} \mid \hat{\mathcal{H}}(\lambda) \mid \phi_{1}) & (\phi_{1} \mid \hat{\mathcal{H}}(\lambda) \mid \phi_{2}) \\ (\phi_{2} \mid \hat{\mathcal{H}}(\lambda) \mid \phi_{1}) & (\phi_{2} \mid \hat{\mathcal{H}}(\lambda) \mid \phi_{2}) \end{pmatrix} = \begin{pmatrix} \varepsilon_{1}(\lambda) & V_{12}(\lambda) \\ V_{21}(\lambda) & \varepsilon_{2}(\lambda) \end{pmatrix}$$

$$\varepsilon_{i}, V_{ij} \in \mathbf{C}, \lambda \in \mathbf{R}$$

 C_{ij} carry the information about internal structure of eigenstates

$$|\psi_{1}(\lambda)\rangle = C_{11}(\lambda)|\phi_{1}\rangle + C_{12}(\lambda)|\phi_{2}\rangle$$
$$|\psi_{2}(\lambda)\rangle = C_{21}(\lambda)|\phi_{1}\rangle + C_{22}(\lambda)|\phi_{2}\rangle$$

Transition condition: - $|C_{i1}(\lambda)|^2 = |C_{i2}(\lambda)|^2$

"Geometry" with "exceptional points" and "transition lines" on complex parameter space is important to judge the existence of nature transition within the real parameter subspace:

- ► Dense exceptional points show quantum chaos.
- ► Phase singular point of the Berry phase.

3. Nc-dependence of Hadron Structures

By extending *Nc* to an arbitrary number, 1/*Nc*-expansion provides a systematic perturbative treatment.

 $M_{\rm meson} \propto O(N_{\rm c}^0)$

 $M_{\rm exotics} \rightarrow \infty$

Exotics are probably not entirely absent in the real world, but they are certainly suppressed — they are certainly not conspicuous in phenomenology. The only known field theoretic reason for this suppression is the 1/Nc expansion. [E. Witten, NPB160,57(1979)]

Internal structure of hadrons should depend on Nc.

It can drastically change due to the development of hadron dynamics scaled by 1/Nc.

How does the internal structure of hadrons change from $Nc = \infty$ to Nc = 3? $\rightarrow 1/N_c \sim \lambda$

Summary

- Geometry on complex-parameter space controls the parameter-dep. within real-parameter subspace.
- Critical color number can be calculated from the geometry on complex-Nc plane.