Possible Existence of K^{bar}-Hyperon Resonances and the origin of K^{bar}-Hadron Attractions

Shoji SHINMURA and Ngo Thi Hong XIEM Gifu University

INTRODUCTION

Low-Energy Hadron-Hadron Interactions

πY, K^{bar}Y, KK : Unknown(Not well known)

A Long-standing problem since Yukawa Theory

Experimental Knowledge

•NN, π N, KN, $\pi\pi$, K π : Phase Shift Analyses are available YN,YY: Cross sections, Hypernuclear Properties K^{bar}N : Cross sections, Scattering Lengths

Theoretical Models:

 Hadron-Exchange Models: The SU(3) symmetry+Physical Hadron masses Quark Models (with Meson-Exchange) the SU(6) Symmetry + OGE Effective Field Theory : Chiral perturbation

First-Principle Calculations:

Hadron-Hadron potentials derived from Lattice QCD calculations

mB potential model *p-space potential Long-range part of potential: One Hadron Exchange SU(3) symmetric Interaction Lagrangian t-channel (mBB coupling constants are predetermined in BB m exchange potential model) Gaussian Form factor with a common range (Cutoff range is the same with the range of short-range potential.) Short-range part of potential: Phenomenological u-channel exchange The SU(3)-symmteric Strengths Common range for all mB pairs We consider two cases of range 0.45 (fm) s-channel exchange $V = (SU(3) \text{ symmteric strengths}) \times \exp(-q^2/L^2)$ + V(one-hadron-exchange potential) $\times \exp(-q^2/L^2)$ where, L=2/rG

= Isospin-dependent ρ -contribution + large attractive ω contribution

The origin of the K^{bar}-Baryon Attractions in S-states

Attractive $K\pi$, $K^{\text{bar}}K$ interactions and resonances				
Our model of Meson-meson Interaction → Parallel Session : Friday 08 Hadron Interaction(09:00-10:3 A Talk by Ngo Thi Hong Xiem				
Kπ-Kη(I=1/2,Jp=0+) two poles \sqrt{s} =650-200i \sqrt{s} =(1410-1420)-(17-23)i				
K_{π} -Kη(I=1/2,jp=1-) one pole K^* \sqrt{s} =(905-910)-(18-20)i				
$\pi\pi$ -K ^{bar} K-ηη(I=0,Jp=0+) two poles $\sigma \qquad \sqrt{s}=(360\text{-}410)\text{-}(510\text{-}540)\text{i}$ $f_0 \qquad \sqrt{s}=(925\text{-}975)\text{-}(36\text{-}60)\text{i}$				
The origin of attractions * vector-meson- $(\rho-,\omega-,K*-,\varphi-)$ exchange				

Property of our BB potential: Single particle potentials in symmetric nuclear matter at normal density (kF=1.36 (1/fm))

_				
<u>Baryon</u>	proton-part	neutron-part	total	<u>0.8×</u>
р	-24.7	-44.8	-69.4	-55.5
n	-44.8	-24.7	-69.4	-55.5
Λ	-18.3	-17.9	-36.3	-29.0
∑ +	33.7	4.5	38.3	30.6
Σ-	3.4	31.8	35.1	28.1
Σ 0	18.7	19.1	37.9	30.3
Ξ0	18.2	3.4	21.5	17.2
<u>E-</u>	2.8	17.8	20.5	16.4
(MeV)				

For all of Σ +, Σ -, Σ 0, Ξ 0, Ξ -, Repulsive interaction with nuclear matter (both proton part and neutron part) (Especially, Σ -, Ξ - interact very repulsively with neutron matter)

We constructed a potential model describing simultaneously Baryon-Baryon and Meson-BaryonScattering. Based on SU(3)-symmetry and One-hadron-exchange mechanism				
NN, YN, YY, πN, KN, K ^{bar} N interactions at low energies,				
We extend the potential to				
S=-2 $\pi\Xi$ - $K^{bar}\Lambda$ - $K^{bar}\Sigma$ - $\eta\Xi$ S=-3 $K^{bar}\Xi$				
and discuss existence of S-wave resonances				

Summary (1) We constructed a potential model which describes consistently NN, YN, YY, π N, KN K^{bar}N scattering. One-hadron-exchange mechanisms with the SU(3) symmetric coupling constants, physical hadron masses and short-range cutoff. The SU(3)-symmetric short-range potential with We tried two ranges rG=0.4 and 0.45 fm for mB potentials, SU(3)-symmetric strengths (BB:relative strengths by LQCD calculations HAL-QCD) (2) Using our potentials, we calculated S=-2 $\pi\Xi$ - $K^{bar}\Lambda$ - $K^{bar}\Sigma$ - $\eta\Xi$ and S=-3 $K^{bar}\Xi$ (3) We found an S-wave resonance and a bound or virtual state. $\Xi^*(I=1/2, J^{\pi}=1/2^-)$ at $\sqrt{s}=1495-1510 \text{MeV}$ with width $\Gamma \sim 150 \text{MeV}$ $\Omega^*(I=0,J^{\pi}=1/2^-)$ at $\sqrt{s}=1789 \text{MeV}$ (BE=19MeV) or 1802("BE"=13MeV)

The resuts are still model-dependent. We need a careful refinement: Full inclusion of Decouplet baryons : Ξ^* , Ω^- Better fit to K⁻p cross sections, etc