

Akira Watanabe¹ and Katsuhiko Suzuki²

¹ Institute of Physics, Academia Sinica

² Department of Physics, Tokyo University of Science

KEK theory center workshop on J-PARC hadron physics in 2014

February 10-12, 2014 @ Tokai, Ibaraki, Japan

Based on
A. Watanabe and K. Suzuki,
PRD 86, 035011 (2012)
and
arXiv:1312.7114 [hep-ph].

Abstract

We study the nucleon structure functions at the small Bjorken-x in the framework of holographic QCD. Using the BPST kernel for the Pomeron exchange and calculating its coupling to the target hadron in the AdS space, we obtain F_2 and F_L structure functions. Results are consistent with experimental data of the deep inelastic scattering. We find that the resulting longitudinal-to-transverse ration of the structure functions, $R=F_L^p/F_T^p$, depends on both of Bjorken-x and the probe energy scale Q^2 . Furthermore, we show that structure functions of other hadrons can also be considered in this framework.

1. Transition from soft- to hard-Pomeron

High energy hadron scattering is dominated by the **Pomeron** exchange.

$$\sigma_{tot}(s) \sim s^{\alpha_0 - 1}$$

S: energy square

 $lpha_0$: Pomeron intercept

multi gluons

in QCD

 $\alpha_0 = 1.0808$

Soft Pomeron [1]

 $\alpha_0 = 1.3 - 1.4$

hard

(~BFKL)

 $\alpha_0 - 1$

soft

$$\alpha_0$$
 ~1.1 (soft process)

"Hard process" (deep inelastic scattering, diffractive vector meson production, etc. at small Bjorken-x, $x = Q^2/s < 0.01$) p = 10.01 is reproduced with

$$\alpha_0$$
 ~1.4 (hard process)

e.g. DIS structure function

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2\alpha}\sigma_{tot} \sim x^{1-\alpha_0}$$

Aim of this work

 Account for the observed scale dependence of Pomeron intercept based on holographic QCD

 Calculate the nucleon structure functions using realistic wave functions in AdS space

2. Deep inelastic scattering at small-x in AdS space

★Pomeron with gauge/string correspondence (~ graviton in large N limit) Brower-Polchinski-Strassler-Tan (BPST) kernel [2,3]

(Conformal)
$$Im[\chi_c(s,z,z')] = e^{(1-\rho)\tau} \exp\left(\frac{-(\log z - \log z')^2}{\rho\tau}\right) / \tau^{1/2} \tau = \log(\rho z z' s / 2) , \quad \xi = \sinh^{-1}\left(\frac{b^2 + (z - z')^2}{2zz'}\right)$$

To mimic QCD and reproduce the confinement effect, we need a scale to break the conformal symmetry. It can be done by introducing the modified kernel.

(Modified)
$$\boxed{ \operatorname{Im} \left[\chi_{\operatorname{mod}} \left(s, z, z' \right) \right] = \operatorname{Im} \left[\chi_{c} \left(s, z, z' \right) \right] + \mathcal{F} \left(z, z', \tau \right) \operatorname{Im} \left[\chi_{c} \left(s, z, z_{0}^{2} / z' \right) \right] }$$

 $\mathcal{F}(z,z',\tau) = 1 - 2\sqrt{\rho\pi\tau}e^{\eta^2}\operatorname{erfc}(\eta)$ $\eta = \left(-\log\frac{zz'}{z_0^2} + \rho\tau\right)/\sqrt{\rho\tau}$

★Structure functions

$$F_{i}(x,Q^{2}) = \frac{g_{0}^{2} \rho^{3/2} Q^{2}}{32\pi^{5/2}} \int dz \, dz' P_{13}^{(i)}(z,Q^{2}) P_{24}(z')(zz') \operatorname{Im}\left[\chi(s,z,z')\right] \quad (i = 2 \text{ or } L)$$

where $P_{13}(z,Q^2)$ and $P_{24}(z')$ are <u>overlap functions</u> of the photon and the hadron $P_{13}(z,Q^2)$: massless 5D U(1) vector field [4], dual to the electromagnetic current $P_{24}(z')$: target hadron

 g_0^2 and p are adjustable parameters of the model

Toy model: "super local" (delta function) approximation [3]

 $P_{13}(z,Q^2) \approx \delta(z-1/Q)$ both distributions are <u>localized</u> in z, z' space $P_{24}(z') \approx \delta(z'-1/Q')$

Toy model shows

small Q/Q' $\to \alpha_0$ small (~1.1) : soft Pomeron large Q/Q' $\to \alpha_0$ large (~1.4) : hard Pomeron

Since Q,Q' correspond to 'localization' in AdS space, behavior of realistic WFs in AdS space is a key to understand the Pomeron properties.

For example, if we want to acquire the large Pomeron intercept, we need a "gap" between the peak positions of $P_{13}(z)$ and $P_{24}(z')$.

3. Hadronic wave functions and Pomeron couplings

Calculate hadronic wave functions in the AdS space with the metric,

$$ds^2 = g_{MN} dx^M dx^N = \frac{1}{z^2} (\eta_{\mu\nu} dx^\mu dx^\nu - dz^2)$$
 with $\varepsilon \le z < \infty$ ($\varepsilon \to 0$) [soft-wall model]

$$\left| S_F = \int d^5 x \sqrt{g} e^{-\kappa^2 z^2} \left(\frac{i}{2} \overline{\Psi} e_A^N \Gamma^A D_N \Psi - \frac{i}{2} (D_N \Psi)^{\dagger} \Gamma^0 e_A^N \Gamma^A \Psi - (M + \kappa^2 z^2) \overline{\Psi} \Psi \right) \right|$$

The nucleon is described as a normalizable mode of the 5D Dirac equation. $\Psi_{R,L}(p,z) = z^{\Delta} \Psi_{R,L}^{0}(p) f_{R,L}(p,z)$

By taking the limit $\kappa \to 0$, one can consider the hard-wall version, where the AdS geometry is sharply cut off at z_0 .

Hadron coupling with graviton

We need the hadron-graviton-hadron three point function for our purpose.

Note:

- Satisfy required normalization condition
- Nucleon overlap function localized at large z
- Photon shows flat distribution at Q~0, while a sharp peak around z=0 for larger Q²~10GeV²

We expect large intercept α_0 for larger Q²!

4. Numerical results

Model parameters, g_0^2 , ρ , and z_0 , are fixed to reproduce the F_2^p data.

5. Summary

- We have calculated the nucleon and pion structure functions at the small x in terms of holographic QCD, which are in good agreement with the data.
- By giving the appropriate Pomeron couplings, one can calculate structure functions of other hadrons at the small *x* in this framework.
- Applications to other high energy scattering processes may be possible.

6. References

- [1] A. Donnachie and P. V. Landshoff, Phys. Lett. B **296**, 227 (1992).
- [2] R. C. Brower, J. Polchinski, M. J. Strassler and C.-I Tan, JHEP **0712**, 005 (2007).
- [3] R. C. Brower, M. Djuric, I. Sarcevic and C.-I Tan, JHEP **1011**, 051 (2010).
- [4] J. Polchinski and M. J. Strassler, JHEP **0305**, 012 (2003) [hep-th/0209211].
- [5] Z. Abidin and C. E. Carlson, Phys. Rev. D **79**, 115003 (2009).
- [6] Z. Abidin and C. E. Carlson, Phys. Rev. D **77**, 115021 (2008). [7] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. **95**, 261602 (2005).