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• Baryon-baryon Interactions 
– Bridging different worlds:                               

Particle Physics / Nuclear Physics / Astrophysics 

– Frontier: 1st principles calc by Lattice simulations 
 

• Outline 
– Introduction 
– Theoretical framework: Interactions on the lattice 
– Challenges in multi-baryons & solutions 
– Lattice QCD results at heavier quark masses 
– Prospects toward physical quark mass point 

•   Nuclear Physics on the Lattice 
– Summary 
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QCD Vacuum 

(1) Build a foundation for nuclear physics 
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NN phase shifts 
from experiments 

Various 
applications 

Neutron Stars 

Nuclei 

Super Novae 
Phenomenological 

Nuclear Forces 

• Nuclear Forces play crucial roles 
– Yet, no clear connection to QCD so far 



11/01/2013 

3D Nuclear Chart 

(2) Predict Unknown Interactions (YN, YY, NNN) 

8 X 8 = 27 + 8s + 1 + 10* + 10 + 8a 

Renaissance in 
Strange World ! 

What is universal, and            
what is individual in baryon forces ? 

What is the fate of 
the H-dibaryon ? 

(uuddss) 



2D Nuclear Chart 

Super Nova 

(2) Predict Unknown Interactions (YN, YY, NNN) 

=Precise ab initio calc= 
2N-forces are insufficient       
3N-force indispensable 

Paradigm Shift in     
Unstable Nuclei              

(New Magic Numbers !) Important role of 3N-force 

Origin of 
Elements 

RIBF @ RIKEN 



Dense Matter  Interactions of       
YN, YY, NNN,… are crucial 

• Neutron Stars, Super Novae  EoS 
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2N 

3N 

PSR1913+16 

J1614-2230 
J0348+0432 

 

Y dof 
How to sustain a neutron star 

against gravitational collapse ? 

Akmal et al.(’98), Nishizaki et al.(’02), Takatsuka et al.(’08) 



Status of Lattice QCD 

Summary by Kronfeld, arXiv:1203.1204 

Fully dynamical (unquenched) QCD simulations    
at the physical quark mass point already performed 

PACS-CS Coll., PRD81(2010)074503     
BMW Coll.,      JHEP1108(2011)148 

Hadron spectrum well reproduced ! 
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• Outline 
– Introduction 
– Theoretical framework: Interactions on the lattice 
– Challenges in multi-baryons & solutions 
– Lattice QCD results at heavier quark masses 
– Prospects toward physical quark mass point 
– Summary 
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Interactions on the Lattice 

• Luscher’s method 
– Phase shift & B.E. from temporal correlation in finite V 

 

• HAL QCD method  
– Potential from spacial (& temporal) correlation 
– Phase shift & B.E by solving Schrodinger eq in infinite V 

M.Luscher,  CMP104(1986)177 
                 CMP105(1986)153 
                 NPB354(1991)531 

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 
HAL QCD Coll., PTEP2012(2012)01A105 

S. Aoki, K. Murano  (YITP) 
N. Ishii, H. Nemura, K. Sasaki, M. Yamada (Univ. of Tsukuba) 
B. Charron (Univ. of Tokyo) 
T. Doi, T. Hatsuda , Y. Ikeda (RIKEN) 
T. Inoue (Nihon Univ.) 
F. Etminan  (Univ. of Birjand) 



Nuclear Forces from Lattice QCD        
[HAL QCD method] 

• Potential is constructed so as to reproduce        
the NN phase shifts (or, S-matrix) 

• Nambu-Bethe-Salpeter (NBS) wave function 
 
 
 
– Wave function  phase shifts 

R L 

M.Luscher, NPB354(1991)531 

CP-PACS Coll., PRD71(2005)094504  

C.-J.Lin et al., NPB619(2001)467 

Ishizuka, Pos LAT2009 (2009) 119 

S.Aoki et al., PRD88(2013)014036 

Extended to multi-particle systems 



“Potential” as a representation of S-matrix  

• Consider the wave function at “interacting region” 
 
– U(r,r’): faithful to the phase shift by construction 

• U(r,r’): NOT an observable, but well defined 
• U(r,r’): E-independent, while non-local in general 

– “Proof of Existence”: Explicit form can be given as 

 

– Non-locality  derivative expansion 
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R L 

LO LO NLO NNLO 

Okubo-Marshak(1958) 

Aoki-Hatsuda-Ishii PTP123(2010)89 

Check on convergence: K.Murano et al., PTP125(2011)1225 



Prescription in HAL QCD method 
L

at
tic

e 
Q

C
D

 NBS wave func. Lat Nuclear Force 

Lat potential is faithful to  
phase shift by construction (at asymptotic region) 

Sc
at

te
ri

ng
 E

xp
. Phase shifts 

Analog to … 
Phen. Potential 
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Luscher’s method vs. HAL method 
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Kurth et al., JHEP1312(2013)015 

I=2 ππ system 
  Best S/N on the lattice 
  G.S. saturation can be achieved in this case 

 

(HAL = “time-dependent” HAL method) 

Beautiful Agreement ! 

HAL 

Luscher 



 

 

 

• Outline 
– Introduction 
– Theoretical framework: Interactions on the lattice 
– Challenges in multi-baryons & solutions 

• (1) S/N issue (2) computational cost 

– Lattice QCD results at heavier quark masses 
– Prospects toward physical quark mass point 
– Summary 
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Challenges in multi-baryons on the lattice (1) 

• Signal / Noise estimate 
– Traditional Lat calc                                                             
 Ground State (G.S.) saturation is necessary 

– S/N gets worse                                                                    
for larger mass number A & light quark mass & 𝒕 → ∞ 

 

– Larger spectral density                                                   
 larger t required 

Lepage(1989) 

G.S. saturation becomes more and more difficult                  
for larger V & lighter mass 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 



Solution (only) in HAL method                           
Extract the signal from excited states 

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 

E-indep of potential U(r,r’)  (excited) scatt states share the same U(r,r’)                 
They are not contaminations, but signals   

Ground State (G.S.) saturation is NOT necessary !  

 Time-dependent Schrodinger Eq. 

[OLD] 
“contaminations” 
from excited states 

[NEW] “signals”       
from excited states 

NN 

potential coupled 
channel 
potential 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 



• Enormous computational cost for correlators  
– # of Wick contraction (permutation) 

•                                                  for mass number A 
 

– # of color / spinor contractions 
 

– Total cost:  
– 2H   :                  9   x      144  = 1 x 103 

– 3H   :              360   x    1728  = 6 x 105 

– 4He :          32400   x  20736  = 7 x 108 

(color) (spinor) 

c.f. T.Yamazaki et al., 
PRD81(2010)111504 

Challenges in multi-baryons on the lattice (2) 

( can be reduced by 2A by inner-baryon exchange)  

t=t(src) t=t(sink) 



Solution: Unified contraction algorithm 

• Traditional algorithm 
 
 

 
• New algorithm 

– Permutation applies to color/spinor indices at “Coeff” 
 

 

– Permutation DONE beforehand 
• (Wick contraction and color/spinor contractions are unified) 

– Significant improvement 

Permutations       

color/spinor contractions (ξ’) 

Sum over color/spinor unified list 

Permuted Sum 

(x add’l. speedup) 

[impose the same spacial label at source] 

TD, M.Endres, Comput. Phys. Comm.184(2013)117 

   4He 
<1sec 

See also subsequent works: Detmold et al., PRD87(2013)114512 
Gunther et al., PRD87(2013)094513 
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Exotic states as Tcc: poster by Y.Ikeda 



• “di-neutron” channel              central force 
• “deuteron” channel                central & tensor force 
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(1) NN potential on the lattice   
(positive parity) 

Nf=2+1 clover (PACS-CS), 1/a=2.2GeV, 
L=2.9fm, mπ=0.7GeV, mN=1.6GeV 

Not Bound 

phase shift 

Elab [MeV] 

N.Ishii et al. (HAL QCD Coll.) 
PLB712(2012)437 



Quark mass dependence 
C

entral 
Tensor 

3S1-3D1 channel Central in 1S0 

Lighter mass corresponds to… 

• Longer interaction range 
• Larger Repulsive Core 
• Stronger Tensor Force 
 

 N.Ishii @ Lat2012 



• Central, tensor & LS forces 
 
 
 
 

Superfluidity 3P2 in neutron star  
 neutrino cooling 

Nf=2 clover (CP-PACS), L=2.5fm, mπ=1.1GeV 

 Cas A NS: cooling is being measured ! 

K.Murano et al., arXiv:1305.2293 
K.Murano @ Lat2013 

Nuclear Forces (negative parity) 

We also observe that potentials glow 
by lighter quark mass 
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Repulsive core    
 Pauli principle ! 

SU(3) study a=0.12fm, L=3.9fm, 
m(PS)= 0.47-1.2GeV 

27,10*:              
Same as NN 

8s,10:                                  
strong repulsive core 

1s: deep attractive pocket 
8a: weak repulsive core 

T.Inoue et al. (HAL QCD Coll.), NPA881(2012)28 

(2) BB potentials 

attractive core ! 

M.Oka et al., NPA464(1987)700 

Also seen in SU(2)c , Takahashi et al.,, PRD82(2010)094506 

Meson-baryon, Y.Ikeda et al., arXiv:1111.2663 

Charmonium-N, Kawanai-Sasaki, PRD82(2010)091501 23 



[K. Sasaki]  

Coupled channel formalism in HAL 



Symmetric LS and Anti-Symmetric LS (ALS) forces 

SU(3) study 

Qualitative behaviors 
are reasonable 

8s – 8a mixes by ALS 

(m(PS)= 1.01GeV) 



Symmetric LS and Anti-Symmetric LS (ALS) forces 
SU(3) study 

[N. Ishii @ Lat2013] 



From QCD to nuclear matter 

T.Inoue et al., PRL111(2013)112503 

Sym. Nuclear matter Neutron matter 

QCD Lat NN forces EoS Neutron Star 
Lat QCD BHF TOV eq. 

SU(3) study 
m(PS)=0.47GeV 

Neutron Star 
M-R relation 
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Preliminary 

short-range 
repulsive 3NF ! 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=1.1GeV, mN=2.1GeV 

(3) 3N-forces (3NF) on the lattice 

+ t-dep method updates etc. 

Triton channel 



Preliminary 

short-range 
repulsive 3NF ! 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=0.76-1.1GeV, mN=1.6-2.1GeV How about YNN, YYN, YYY ? 

(3) 3N-forces (3NF) on the lattice 

+ t-dep method updates etc. 

Y dof 

How about other geometries ?  

Triton channel 

YNN(?) 
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• Physical mass point, Infinite V limit, continuum limit 

– Physical mπ crucial for OPEP, chiral extrapolation won’t work 
 
 
 
 

 

 
 

Towards realistic potential 
Sc

at
t.

 le
ng

th
 

 mq 

Phys. point 

 mq 

“Unitary Region” 

We are here 

Y.Kuramashi, 
PTPS122(1996)153 

10PFlops 

K computer 

Mπ>=400MeV 
L=3fm 

Mπ=140MeV 
L=9fm 



Summary and Prospects 

• Hadron Interactions by 1st principle Lat calc  

– Bridging different worlds:                                             
Particle Physics / Nuclear Physics / Astrophysics 

• Lattice QCD results for NN, YN/YY, NNN, etc. 
– Intriguing physics even at heavy quark masses 

• Toward physical quark mass point: 
 Breakthroughs in S/N issue & Comput. cost issue 

 
 Realistic hadron interactions 
 Nuclear Physics on the Lattice ! 
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