Feb. 10, 2014 at Tokaí

Experiments on Strangeness nuclear physics

Tomofumi NAGAE Kyoto University

Contents

- Introduction to Strangeness Nuclear Physics
- Hadronic Systems with Strangeness
 - S=-1 Baryon : Λ , Σ
 - S=-2 Baryon : Ξ
 - S=-1 Meson : K
- Summary

"Hypernuclei"

- Hadron Many-Body systems with Strangeness
- lacktriangle Hyperons(Λ , Σ , Ξ) in Nuclei

■ Strange Mesons (K, K) in nuclei

What's in the Neutron Star Core?

By F. Weber

Chemical Potential:

$$\mu_B = m_B + \frac{k_F^2}{2m_B} + U(k_F)$$

Modern Picture of Baryon-Baryon Interactions

Nuclear Force from Lattice QCD

World Facilities in the 21st Century For Strangeness Nuclear Physics

Hadron Experimental Hall

World highest intensity Kaon beams!

First beam in Feb. 2009

60m x 56m

J-PARC Beam time: π[±] → K⁻

S=-1 Baryon Systems

Hypernuclear Gamma-rays

AN Effective Interaction

$$V_{\Lambda N}^{eff} = V_0(r) + V_{\sigma}(r)\vec{s_{\Lambda}}\vec{s_{N}} + V_{\Lambda}(r)\vec{\ell_{\Lambda N}}\vec{s_{\Lambda}} + V_{N}(r)\vec{\ell_{\Lambda N}}\vec{s_{N}} + V_{T}(r)S_{12}$$

$$\Delta \qquad \qquad S_{\Lambda} \qquad \qquad S_{N} \qquad \qquad T$$

Parameters in MeV						
	Δ	S_{Λ}	S_N	T		
A = 7 - ?	0.430	-0.015	-0.390	0.030		
A = 11 - 16	0.330	-0.015	-0.350	0.024		
		À				

by D.J. Millener

Gamma-ray Spectroscopy of Light Hypernuclei J-PARC E13 H. Tamura et al.

- ▲ AN interaction in sd-shell hypernuclei: ¹⁹ AF
- Spin-flip B(M1) measurement for g_∧ in nuclei
 - TLi(K⁻,π⁻γ)⁷∧Li at 1.1 GeV/c:
 M1(3/2+→1/2+)
- various hypernuclear gamma-rays
 - ⁴ ¹⁰ ¹⁰ B, etc.

Ge x32; ε~6% at 1 MeV → γ-γ coincidence

Σ-Hypernuclei

■ One bound state observed: ⁴∑He

T. Nagae et al., PRL 80 (1998) 1605.

Σ -- Nucleus potential: Repulsive

T. Harada and Y. Hirabayashi, NPA 759 (2005) 143.

ΛN - ΣN coupling

- Strong coupling through one-pion exchange
- Large mixing in neutron-rich(N>Z) hypernuclei
- \blacksquare Λ NN three-body force → High density matter EOS

Neutron-rich Hypernuclei with (π⁻, K⁺) reaction A. Sakaguchi et al.

S=-2 Baryon Systems

Double- A Hypernuclei

- "Nagara" event; ^^6He
 - Uniquely identified
 - $\Delta B_{\wedge \wedge} = 0.67 \pm 0.17 \text{ MeV}$

J.K. Ahn et al., PRC 88 (2013) 014003.

■ smaller than before (~4 MeV)

KEK E373

H. Takahashi et al., PRL87, (2001) 212502.

J-PARC E07: Hybrid-Emulsion Exp.

K. Nakazawa et al.

10 times' statistics of E373 (KEK-PS) ⇔ 10⁴ Ξ-stop

~10² double hypernuclei,

Spectrometer

SSD Ge array

KURAMA Spectrometer

S=-2 World

三 hypernuclei

- Previous measurements : BNL E885
 - ¹²C(K⁻, K⁺) at 1.8 GeV/c
 - $\triangle E=14 \text{ MeV}_{\text{FWHM}}$
 - Events in the bound region: 89±14 nb/sr (<8deg.); 42±5 nb/sr (<14deg.)</p>

■ V=~14 MeV (weakly attractive)

Better resolution!

■ 60 msr, $\Delta p/p=0.05\% \rightarrow \Delta M=1.5 \text{ MeV}$

T. Motoba and S. Sugimoto, Nucl. Phys. A 835, 223 (2010)

Spectroscopic Study of Ξ -Hypernucleus, ¹² Ξ Be, via the ¹²C(K⁻,K⁺) Reaction

■ Discovery of Ξ-hypernuclei

- J-PARC E05 T. Nagae et al.
- Measurement of Ξ -nucleus potential depth and width
 of ¹² ≡ Be S=-1 S=-2 (Multi-Strangeness System)

"S-2S" spectrometer

Q1 Construction in 2012

■ 2.4 m x 0.88 m, 37 ton

Kaonic Nuclei

Experiments on Kpp

■ First evidence of *K*⁻*pp* with ⁶Li+⁷Li+¹²C

B=115+6/-5+3/-4 MeV

 $\Gamma = 67 + 14/-11 + 2/-3 \text{ MeV}$

M. Agnello et al., PRL94, (2005) 212303

Confirmed for ⁶Li only, with better statistics

S. Piano@Hyp-X

New inv mass spectra compatible with published one

New data Old data
Same cuts applied

FINUDA Coll., PRL

- DISTO data: $p+p\rightarrow K^-pp + K^+$ at 2.85 GeV
 - M=2267±3±5 MeV/c²
 - ► Γ= 118±8±10 MeV

T. Yamazaki et al., PRL 104 (2010) 132502.

Theoretical work on Kpp

K-pp does exist !!

...but maybe broad (consistent with FINUDA)

(MeV)	ATMS Yamazaki & Akaishi, PLB535 (2002) 70.	Variational Dote, Hyodo, Weise, PRC79 (2009) 014003.	Faddeev Shevchenko, Gal, Mares, PRL98 (2007) 082301.	Faddeev Ikeda & Sato, PRC79 (2009) 035201.	Variational Wycech & Green, PRC79 (2009) 014001.
В	48	17-23	50-70	60-95	40-80
	61	40-70	90-110	45-80	40-85

- FSI effects?; V.K. Magas et al., PRC 74 (2006) 025206.
- \(\Lambda^* \nb \) bound state ?; T. Uchino et al., NPA 868-869 (2011) 53.

K-pp search experiments at J-PARC

 p_n (MeV/c)

³He(K⁻,n) reaction at 1 GeV/c: E15 M. Iwasaki et al. ► $K^- + {}^3He \rightarrow n + (K^-pp)$ flight length = 12m **Neutron ToF Wall** $(\mu b/({
m sr~MeV}))$ **Beam Sweeping** n **Magnet** $d^2\sigma/d\Omega_n dE_n$ mass resolution for K-pp **Cylindrical** invariant mass π^{-} σ = 19MeV/c² (σ_{CDC} = 250 μ m) **Detector** 1GeV/c missing mass 1200 **System** σ = 12MeV/c² (σ_{ToF} = 150ps) K- beam

E27: $d(\pi^+, K^+)$ reaction

Yamazaki & Akaishi, Phys. Rev. C76 (2007) 045201.

d(π+, K+) @1.7GeV/c

Range Counter System for E27

5 layers (1+2+2+5+2 cm) of plastic scinti.

■ 39 - 122 degrees(L+R)

■ 50 cm TOF

Coincidence study

"pion"=π or slow p

"proton"=p>280 MeV/c

Pion Coincidence Rate

- $\mathbf{R}_{\pi} = (\text{Pion coincidence spectrum})/(\text{Inclusive spectrum})$
- \blacksquare $R_{\pi} \propto (\pi \text{ emission BR})x(\pi \text{ detection efficiency})$

Proton Coincidence Rate

Hyperon mass with two protons

- $= d(\pi^+, K^+)K^-pp; K^-pp \rightarrow Y+p, Y \rightarrow \pi+p(+\pi)$
 - $= M_Y^2 = (E_{\pi} + M_d E_{K} E_p)^2 (p_{\pi} p_{K} p_p)^2$

Summary

- Λ-Hypernuclei
 - E10: Neutron-rich hypernuclei; ⁶ H
 - E13: Hypernuclear γ-ray spectroscopy; ¹⁹_ΛF, ⁴_ΛHe
- ΛΛ-Hypernuclei
 - E07: Hybrid-emulsion experiment
- E-Hypernuclei
 - E05: (K⁻,K⁺) spectroscopy with S-2S
- Kaonic Nuclei (K-pp bound state)
 - **■** E15: ³He(K⁻,n)
 - E27: $d(π^+, K^+)$