Status of kaonic nucleus search experiment (E15) at J-PARC

RIKEN H. Outa

for E15 collabolation

- ✓ Kaonic nuclear experiments
- ✓ Present status of the E15 experiment at J-PARC

Search for the K-pp bound state in the 3He(in-flight K-, n/p) reaction

- 3He(in-flight K-, n) spectrum Hashimoto

3He(in-flight K-, p) spectrum Tokuda

– Λp+n(missing) channel analysis
 Sada

J-PARC E15 collaboration

```
S. Ajimura<sup>a</sup>, G. Beer<sup>b</sup>, H. Bhang<sup>c</sup>, M. Bragadireanu<sup>e</sup>, P. Buehler<sup>f</sup>, L. Busso<sup>g,h</sup>, M. Cargnelli<sup>f</sup>, S. Choi<sup>c</sup>, C. Curceanu<sup>d</sup>, S. Enomoto<sup>i</sup>, D. Faso<sup>g,h</sup>, H. Fujioka<sup>j</sup>, Y. Fujiwara<sup>k</sup>, T. Fukuda<sup>j</sup>, C. Guaraldo<sup>d</sup>, T. Hashimoto<sup>k</sup>, R. S. Hayano<sup>k</sup>, T. Hiraiwa<sup>a</sup>, M. Iio<sup>o</sup>, M. Iliescu<sup>d</sup>, K. Inoue<sup>i</sup>, Y. Ishiguro<sup>j</sup>, T. Ishikawa<sup>k</sup>, S. Ishimoto<sup>o</sup>, T. Ishiwatari<sup>f</sup>, K. Itahashi<sup>n</sup>, M. Iwai<sup>o</sup>, M. Iwasaki<sup>m,n*</sup>, Y. Kato<sup>n</sup>, S. Kawasaki<sup>i</sup>, P. Kienle<sup>p</sup>, H. Kou<sup>m</sup>, Y. Ma<sup>n</sup>, J. Marton<sup>f</sup>, Y. Matsuda<sup>q</sup>, Y. Mizoi<sup>j</sup>, O. Morra<sup>g</sup>, T. Nagae<sup>j*</sup>, H. Noumi<sup>a</sup>, H. Ohnishi<sup>n</sup>, S. Okada<sup>n</sup>, H. Outa<sup>n</sup>, K. Piscicchia<sup>d</sup>, M. Poli Lener<sup>d</sup>, A. Romero Vidal<sup>d</sup>, Y. Sada<sup>j</sup>, A. Sakaguchi<sup>i</sup>, F. Sakuma<sup>n</sup>, M. Sato<sup>n</sup>, A. Scordo<sup>d</sup>, M. Sekimoto<sup>o</sup>, H. Shi<sup>k</sup>, D. Sirghi<sup>d,e</sup>, F. Sirghi<sup>d,e</sup>, K. Suzuki<sup>f</sup>, S. Suzuki<sup>o</sup>, T. Suzuki<sup>k</sup>, K. Tanida<sup>c</sup>, H. Tatsuno<sup>d</sup>, M. Tokuda<sup>m</sup>, D. Tomono<sup>n</sup>, A. Toyoda<sup>o</sup>, K. Tsukada<sup>r</sup>, O. Vazquez Doce<sup>d,s</sup>, E. Widmann<sup>f</sup>, B. K. Weunschek<sup>f</sup>, T. Yamazaki<sup>k,n</sup>, H. Yim<sup>t</sup>, Q. Zhang<sup>n</sup>, and J. Zmeskal<sup>f</sup>
```

- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 1+1
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea ☀
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ▮▮
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 💵
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria =
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
- (p) Technische Universität München, D-85748, Garching, Germany
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan ●
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌
- (*) Spokesperson
- (\$) Co-Spokesperson

Introduction

Motivation:

What will happen when anti-kaon is embedded in nucleus?

- ✓ Does the simplest Kaonic nucleus "K-pp" exist?
- ✓ How deeply bound?

Y. Akaishi & T. Yamazaki, Phys. Rev. C65 (2002) 044005.

Y. Akaishi & T. Yamazaki, Phys. Lett. B535 (2002) 70.

The simplest kaonic nuclei KbarNN

chiral & energy dependent	B.E.[MeV]	Γ[MeV]
N. Barnea, A. Gal, E.Z. Liverts(2012)	16	41
A. Dote, T. Hyodo, W. Weise(2008,09)	17-23	40-70
Y. Ikeda, H. Kamano, T. Sato(2010)	9-16	34-46
Λ(1405) ansatz	B F [MeV]	Γ[ΜΑ\/]

Λ(1405) ansatz	B.E.[MeV]	Γ[MeV]
T. Yamazaki, Y. Akaishi(2002)	48	61
N.V. Shevchenko, A. Gal, J. Mares(2007)	50-70	90-110
Y. Ikeda, T. Sato (2007,2009)	60-95	45-80
S. Wycech, A.M. Green (2009)	40-80	40-85

- Little experimental information
- bound or not? B.E. and width?

B(K pp) [MeV]

INPC2013 @ Firenze, Jun. 6th ,2013

Theoretical calculations on ³He(K⁻,n)

T.Koike and T.Harada. , PLB652 (2007) 262

cross section may be > mb/sr Easy to observe If $d\sigma/d\Omega > 1.0$ mb/sr

J. Yamagata-Sekihara et. al., Phys. Rev. C 80, 045204 (2009)

Σ tag may enhance the structure in bound region.

E15 Experiment

Setup & Performance of detectors

K1.8BR spectrometer [Jun. 2012]

J-PARC E15 (Search for K-pp deeply-bound kaonic nuclear state

J-PARC E15 1st stage physics run

- Accumulated data
 - w/ liquid helium-3 target: ~1% of original proposal

period	primary beam intensity	duration	Kaons on target
March, 2013	14.5 kW (18 Tppp, 6s cycle)	30 hours	0.9 x 10 ⁹
May, 2013	24 kW (30 Tppp, 6s cycle)	88 hours	4.0 x 10 ⁹

production target: Au 50% loss, spill length: ~2s, spill duty factor: ~45%

- In total, 5 x10⁹ K- on target
- empty target run, beam-through run, pion scattering run ...
- Expected physics output
 - ³He(K−, n), [& ∧pn]
 - ³He(K-, p), [³He(K-, d)]
 - multi-nucleon absorption, hyperon production etc...

Beam momentum reconstruction

T0-PC resolution estimated with simulation: 3.4+-0.3 MeV/c

(Uncertainty in intrinsic timing resolution for protons)

- Beam momentum reconstruction
 - connect BLC1&2 tracks with 2nd order transfer matrix
- Proton beam through run
 - compare with forward TOF (T0-PC)

Beam momentum resolution 2.0±0.5 MeV/c

CDS performance

Neutron analysis

► Neutral hit

- no hit on the BVC and CVC
- first hit in the NC (timing-wise)
 was used to calculate 1/beta

► Threshold on energy deposit

- · reduce accidentals
- online (discri) : ~0.5 MeVee
- · offline: 8 MeVee

Efficiency = $23\pm4\%$

Missing mass resolution

3He (K-, n) semi-inclusive spectrum

(Hashimoto)

3He (K-, n) semi-inclusive spectrum

Tail component in the bound region is NOT due to the detector resolution!!

Possible fast neutrons

- Quasi-free nucleon process
 - fast neutrons from Σ decay
- ► Two-nucleon reaction process (2NR)
 - peak structure in non-mesonic branch
 - continuous distribution in mesonic branch (if uniform in phase space)
- ► Three-nucleon reaction process (3NR)
 - similar situation with mesonic 2NR

Possible fast neutrons - Σ decay -

Can be removed by reconstructed Σ with a pion detected with the CDS

- ► 85~90% removed
- ► KN→NK contami in Σ selection
- Global shape did not change.

Possible fast neutrons

- Quasi-free nucleon process
 - fast neutrons from Σ decay ~90% can be removed
- Two-nucleon reaction process (2NR)
 - peak structure in non-mesonic branch
 ΛN,ΣN branch negligible Y*N branch may contribute
 - continuous distribution in mesonic branch (if uniform in phase space)
- Three-nucleon reaction process (3NR)
 - similar situation with mesonic 2NR
 Mesonic 2NR & 3NR are negligible in the bound region

We can not explain the tail structure with ordinary processes

→ evaluate the intensity of the excess

Intensity of the excess in K⁻pp assumption

Upper limits for deep bound region

peak function + 2nd polynomial background

$$F(x;M_S,\Gamma) = \int f(\tau) * g(x-\tau,\sigma_{MM}(\tau))d\tau$$

$$f(x;M_S,\Gamma) = \frac{d\sigma}{d\Omega}(\theta_{lab} = 0) \cdot \left(\frac{1}{2\pi} \frac{\Gamma}{(x-M_s)^2 + \Gamma^2/4}\right) \cdot A_{cds}(x) \cdot \epsilon_{\Sigma \text{cut}}(x)$$

$$g(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right),$$
Fit region: 1
(2.29 GeV/c²~ possible control from Y*N brance)

K-pp→Λp decay only

Fit region: 1.5~2.29 GeV/c² (2.29 GeV/c²~ possible contribution from Y*N branch of 2NR)

3He (K-, p) spectrum (Tokuda)

J-PARC E15 experiment

A search for the simplest kaonic nucleus K⁻pp

To compare with both ${}^{3}\text{He}(K^{-}, n/p)$ reactions, We can get the information of isospin dependence of reactions.

APPC12 @ Chiba, July17th 2013

KEK-PS 548: In-flight ¹²C(K⁻,N)

Fig. 1. Missing mass spectra of the $^{12}C(K^-, n)$ reaction (upper) and $^{12}C(K^-, p)$ reaction (lower). The solid curves represent the calculated best fit spectra for potentials with Re(V)=-190 MeV and Im(V)=-40 MeV (upper) and Re(V)=-160 MeV Im(V)=-50 MeV (lower). The dotted curves represent the calculated spectra for Re(V)=-60 MeV and Im(V)=-60 MeV. The dot-dashed curves represent a background process (see main text).

3He (K-, p) spectrum (VERY preliminary!)

missing_mass_inT

3He (K-, n) semi-inclusive spectrum

Λp n(missing) correlation(Sada)

Missing Mass of ${}^{3}\text{He}(K^{-}, \Lambda p)$

M. M. of 3 He (K-, Λ p) [GeV/c²]

Missing neutron can be identified.

To study the origin of Λpn events,

Let us check Dalitz-plot in the next slide.

Selected **neutron missing** mass peak.

Selected **neutron missing** mass peak.

Selected **neutron missing** mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- ✓ It seems 3N-abs(\(\Lambda\)pn) exists

- "Λpn" w/ forward n in the NC are a few events.
- ☑We would like to carry out high statistical experiments!

³He(K⁻, Λpn) Result :Dalitz plot of Λpn

- Kinematical bound

Selected **neutron missing** mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- ✓ It seems 3N-abs(∧pn) exists
 ✓ 2N-abs is very weak.

- -"Λpn" w/ forward n in the NC are a few events.
- We would like to carry out high statistical experiments!

³He(K⁻, Λpn) Result :Dalitz plot of Λpn

Selected **neutron missing** mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- ✓ It seems 3N-abs (Λpn) exists ✓ 2N-abs is almost nothing.
- "Λpn" w/ forward n in the NC is a few events.
- We would like to carry out high statistical experiments!

³He(K⁻, Λpn) Result :Dalitz plot of Λpn

Finally, will be confirmed in I. M. of Λp w/ missing n.

Selected **neutron missing** mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- ✓ It seems 3N-abs(Λ pn) exists ✓ 2N-abs is almost nothing.
- $\ \square$ can not see Σ - Λ conversion line?
- "Λpn" w/ forward n in the NC is a few events.
- ✓ We would like to carry out high statistical experiments!

³He(K⁻, ∧pn) Result

Summary of J-PARC E15 status

- ✓ J-PARC E15 1st stage physics run was performed.
 - All the detector subsystems are working well with the good performance as designed
 - Unfortunately stopped ay only 24KW*4 day running...
- ✓ Semi-inclusive 3He(K-,n) spectrum have tail component in the K-bound region which is hard to be explained by ordinary processes.
- ✓ 3He (K-,p) spectrum looks <u>very similar to (K-,n)</u>
- Λ + p + n(missing) correlation analysis seems very interesting when the statistics is much improved in the future run.

SPARE SLIDES

Dalitz plot

Dalitz plot of ∧pn ■

Formation spectra : in-flight ³He(K⁻,n)

K^- + 3 He → "K-pp" + n @ P_K=1GeV/c, θ =0°

T.Koike and T.Harada., PLB652 (2007) 262

E15: PID for CDS

中性子検出効率

- PID for CDS (vertex in target volume)
- Cos θ means angle between beam K- and scattered particle
- Correlation of K- 's cos and momentum is clear => elastic scattering
- there is some deuteron events=> ${}^{3}\text{He}(K-,d)\Lambda$ reaction??

Neutron detection efficiency

$$K^- + ^3 \text{He} \rightarrow K_s^0 + n + d_s$$

 $K_s^0 \rightarrow \pi^+ + \pi^-$

exclusive analysis with KxCDH^{2hit} trigger data

estimate neutron flux on the NC from missing momentum

ε_{NC}= 23 +- 4 %

Missing mass scale

n

Normalization

	value	relative error (%)
Luminosity $L (\mu b^{-1})$	540	1.9
ϵ_{vertex}	0.98	2
$1 - f_{abs}^n$	0.946	1
ϵ_{NC}	0.23	16.5
$1 - \epsilon^n_{overveto}$	0.922	1.0
$A_{NC} $ (msr)	22.1	1
ϵ_{DAQ}	0.815	0.9
ϵ_{trig}	0.983	0.1
total		16.9

► ε_{vertex}:

- evaluated from CDC tracking efficiency
- track multiplicities were considered.

ε_{nabs}: neutron reaction loss before the NC

- evaluated from ε_{NC}.
- NC thickness ~ 36 g. Material between FF-NC ~ 7 g.
- 20% systematic error assigned.
- ► A_{NC}: NC geometrical acceptance at the first layer.
 - Error from uncertainty in the relative position ~ 1 cm.

J-PARC

Locates in Tokai, Ibaraki

Kaon beam quality @ J-PARC K1.8BR

KEK-PS E549

⁴He(stopped K⁻,p)

Fig. 5. The missing mass spectrum from the ${}^4\text{He}(K_{\text{stc}}^-)$ inclusive measurement. The systematic error of the ord cent relative error. The upper figure shows the overall in the present experiment.

⁴He(stopped K⁻,p)

Error bar が見えないほどの高統計

Fig. 5. The missing mass spectrum from the ${}^{4}\text{He}(K_{\text{stc}}^{-})$ Upper limits for the narrow deeply bound status