Status of kaonic nucleus search experiment (E15) at J-PARC RIKEN H. Outa for E15 collabolation - ✓ Kaonic nuclear experiments - ✓ Present status of the E15 experiment at J-PARC Search for the K-pp bound state in the 3He(in-flight K-, n/p) reaction - 3He(in-flight K-, n) spectrum Hashimoto 3He(in-flight K-, p) spectrum Tokuda – Λp+n(missing) channel analysis Sada #### J-PARC E15 collaboration ``` S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^j, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^j, O. Morra^g, T. Nagae^{j*}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f ``` - (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 1+1 - (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea ☀ - (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ▮▮ - (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 💵 - (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria = - (g) INFN Sezione di Torino, Torino, Italy - (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy - (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan - (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan • - (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan • - (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan • - (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan - (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan • - (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan - (p) Technische Universität München, D-85748, Garching, Germany - (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan • - (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan ● - (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany - (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌 - (*) Spokesperson - (\$) Co-Spokesperson ### Introduction #### **Motivation:** What will happen when anti-kaon is embedded in nucleus? - ✓ Does the simplest Kaonic nucleus "K-pp" exist? - ✓ How deeply bound? Y. Akaishi & T. Yamazaki, Phys. Rev. C65 (2002) 044005. Y. Akaishi & T. Yamazaki, Phys. Lett. B535 (2002) 70. ## The simplest kaonic nuclei KbarNN | chiral & energy dependent | B.E.[MeV] | Γ[MeV] | |---------------------------------------|-----------|---------| | N. Barnea, A. Gal, E.Z. Liverts(2012) | 16 | 41 | | A. Dote, T. Hyodo, W. Weise(2008,09) | 17-23 | 40-70 | | Y. Ikeda, H. Kamano, T. Sato(2010) | 9-16 | 34-46 | | Λ(1405) ansatz | B F [MeV] | Γ[ΜΑ\/] | | Λ(1405) ansatz | B.E.[MeV] | Γ[MeV] | |---|-----------|--------| | T. Yamazaki, Y. Akaishi(2002) | 48 | 61 | | N.V. Shevchenko, A. Gal, J. Mares(2007) | 50-70 | 90-110 | | Y. Ikeda, T. Sato (2007,2009) | 60-95 | 45-80 | | S. Wycech, A.M. Green (2009) | 40-80 | 40-85 | - Little experimental information - bound or not? B.E. and width? B(K pp) [MeV] INPC2013 @ Firenze, Jun. 6th ,2013 ## Theoretical calculations on ³He(K⁻,n) T.Koike and T.Harada. , PLB652 (2007) 262 cross section may be > mb/sr Easy to observe If $d\sigma/d\Omega > 1.0$ mb/sr J. Yamagata-Sekihara et. al., Phys. Rev. C 80, 045204 (2009) Σ tag may enhance the structure in bound region. # **E15 Experiment** Setup & Performance of detectors #### K1.8BR spectrometer [Jun. 2012] # J-PARC E15 (Search for K-pp deeply-bound kaonic nuclear state ## J-PARC E15 1st stage physics run - Accumulated data - w/ liquid helium-3 target: ~1% of original proposal | period | primary beam intensity | duration | Kaons on target | |-------------|-----------------------------|----------|-----------------------| | March, 2013 | 14.5 kW (18 Tppp, 6s cycle) | 30 hours | 0.9 x 10 ⁹ | | May, 2013 | 24 kW (30 Tppp, 6s cycle) | 88 hours | 4.0 x 10 ⁹ | production target: Au 50% loss, spill length: ~2s, spill duty factor: ~45% - In total, 5 x10⁹ K- on target - empty target run, beam-through run, pion scattering run ... - Expected physics output - ³He(K−, n), [& ∧pn] - ³He(K-, p), [³He(K-, d)] - multi-nucleon absorption, hyperon production etc... #### Beam momentum reconstruction T0-PC resolution estimated with simulation: 3.4+-0.3 MeV/c (Uncertainty in intrinsic timing resolution for protons) - Beam momentum reconstruction - connect BLC1&2 tracks with 2nd order transfer matrix - Proton beam through run - compare with forward TOF (T0-PC) Beam momentum resolution 2.0±0.5 MeV/c # **CDS** performance # **Neutron analysis** #### ► Neutral hit - no hit on the BVC and CVC - first hit in the NC (timing-wise) was used to calculate 1/beta #### ► Threshold on energy deposit - · reduce accidentals - online (discri) : ~0.5 MeVee - · offline: 8 MeVee Efficiency = $23\pm4\%$ # Missing mass resolution # 3He (K-, n) semi-inclusive spectrum (Hashimoto) # 3He (K-, n) semi-inclusive spectrum Tail component in the bound region is NOT due to the detector resolution!! #### Possible fast neutrons - Quasi-free nucleon process - fast neutrons from Σ decay - ► Two-nucleon reaction process (2NR) - peak structure in non-mesonic branch - continuous distribution in mesonic branch (if uniform in phase space) - ► Three-nucleon reaction process (3NR) - similar situation with mesonic 2NR ## Possible fast neutrons - Σ decay - Can be removed by reconstructed Σ with a pion detected with the CDS - ► 85~90% removed - ► KN→NK contami in Σ selection - Global shape did not change. #### Possible fast neutrons - Quasi-free nucleon process - fast neutrons from Σ decay ~90% can be removed - Two-nucleon reaction process (2NR) - peak structure in non-mesonic branch ΛN,ΣN branch negligible Y*N branch may contribute - continuous distribution in mesonic branch (if uniform in phase space) - Three-nucleon reaction process (3NR) - similar situation with mesonic 2NR Mesonic 2NR & 3NR are negligible in the bound region We can not explain the tail structure with ordinary processes → evaluate the intensity of the excess ### Intensity of the excess in K⁻pp assumption # Upper limits for deep bound region #### peak function + 2nd polynomial background $$F(x;M_S,\Gamma) = \int f(\tau) * g(x-\tau,\sigma_{MM}(\tau))d\tau$$ $$f(x;M_S,\Gamma) = \frac{d\sigma}{d\Omega}(\theta_{lab} = 0) \cdot \left(\frac{1}{2\pi} \frac{\Gamma}{(x-M_s)^2 + \Gamma^2/4}\right) \cdot A_{cds}(x) \cdot \epsilon_{\Sigma \text{cut}}(x)$$ $$g(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right),$$ Fit region: 1 (2.29 GeV/c²~ possible control from Y*N brance) K-pp→Λp decay only Fit region: 1.5~2.29 GeV/c² (2.29 GeV/c²~ possible contribution from Y*N branch of 2NR) # 3He (K-, p) spectrum (Tokuda) # J-PARC E15 experiment A search for the simplest kaonic nucleus K⁻pp To compare with both ${}^{3}\text{He}(K^{-}, n/p)$ reactions, We can get the information of isospin dependence of reactions. APPC12 @ Chiba, July17th 2013 # KEK-PS 548: In-flight ¹²C(K⁻,N) Fig. 1. Missing mass spectra of the $^{12}C(K^-, n)$ reaction (upper) and $^{12}C(K^-, p)$ reaction (lower). The solid curves represent the calculated best fit spectra for potentials with Re(V)=-190 MeV and Im(V)=-40 MeV (upper) and Re(V)=-160 MeV Im(V)=-50 MeV (lower). The dotted curves represent the calculated spectra for Re(V)=-60 MeV and Im(V)=-60 MeV. The dot-dashed curves represent a background process (see main text). # 3He (K-, p) spectrum (VERY preliminary!) missing_mass_inT # 3He (K-, n) semi-inclusive spectrum # **Λp n(missing) correlation**(Sada) #### Missing Mass of ${}^{3}\text{He}(K^{-}, \Lambda p)$ ### M. M. of 3 He (K-, Λ p) [GeV/c²] Missing neutron can be identified. To study the origin of Λpn events, Let us check Dalitz-plot in the next slide. Selected **neutron missing** mass peak. Selected **neutron missing** mass peak. Selected **neutron missing** mass peak. - Events are scattered widely in phase space. - Multi-N absorption processes exist. - ✓ It seems 3N-abs(\(\Lambda\)pn) exists - "Λpn" w/ forward n in the NC are a few events. - ☑We would like to carry out high statistical experiments! ## ³He(K⁻, Λpn) Result :Dalitz plot of Λpn - Kinematical bound Selected **neutron missing** mass peak. - Events are scattered widely in phase space. - Multi-N absorption processes exist. - ✓ It seems 3N-abs(∧pn) exists ✓ 2N-abs is very weak. - -"Λpn" w/ forward n in the NC are a few events. - We would like to carry out high statistical experiments! ## ³He(K⁻, Λpn) Result :Dalitz plot of Λpn Selected **neutron missing** mass peak. - Events are scattered widely in phase space. - Multi-N absorption processes exist. - ✓ It seems 3N-abs (Λpn) exists ✓ 2N-abs is almost nothing. - "Λpn" w/ forward n in the NC is a few events. - We would like to carry out high statistical experiments! ## ³He(K⁻, Λpn) Result :Dalitz plot of Λpn Finally, will be confirmed in I. M. of Λp w/ missing n. Selected **neutron missing** mass peak. - Events are scattered widely in phase space. - Multi-N absorption processes exist. - ✓ It seems 3N-abs(Λ pn) exists ✓ 2N-abs is almost nothing. - $\ \square$ can not see Σ - Λ conversion line? - "Λpn" w/ forward n in the NC is a few events. - ✓ We would like to carry out high statistical experiments! ## ³He(K⁻, ∧pn) Result ## **Summary of J-PARC E15 status** - ✓ J-PARC E15 1st stage physics run was performed. - All the detector subsystems are working well with the good performance as designed - Unfortunately stopped ay only 24KW*4 day running... - ✓ Semi-inclusive 3He(K-,n) spectrum have tail component in the K-bound region which is hard to be explained by ordinary processes. - ✓ 3He (K-,p) spectrum looks <u>very similar to (K-,n)</u> - Λ + p + n(missing) correlation analysis seems very interesting when the statistics is much improved in the future run. # SPARE SLIDES #### **Dalitz plot** ## Dalitz plot of ∧pn ■ ## Formation spectra : in-flight ³He(K⁻,n) ## K^- + 3 He → "K-pp" + n @ P_K=1GeV/c, θ =0° T.Koike and T.Harada., PLB652 (2007) 262 # E15: PID for CDS ## 中性子検出効率 - PID for CDS (vertex in target volume) - Cos θ means angle between beam K- and scattered particle - Correlation of K- 's cos and momentum is clear => elastic scattering - there is some deuteron events=> ${}^{3}\text{He}(K-,d)\Lambda$ reaction?? ## **Neutron detection efficiency** $$K^- + ^3 \text{He} \rightarrow K_s^0 + n + d_s$$ $K_s^0 \rightarrow \pi^+ + \pi^-$ exclusive analysis with KxCDH^{2hit} trigger data estimate neutron flux on the NC from missing momentum ε_{NC}= 23 +- 4 % ## Missing mass scale n ## Normalization | | value | relative error (%) | |-----------------------------|-------|--------------------| | Luminosity $L (\mu b^{-1})$ | 540 | 1.9 | | ϵ_{vertex} | 0.98 | 2 | | $1 - f_{abs}^n$ | 0.946 | 1 | | ϵ_{NC} | 0.23 | 16.5 | | $1 - \epsilon^n_{overveto}$ | 0.922 | 1.0 | | $A_{NC} $ (msr) | 22.1 | 1 | | ϵ_{DAQ} | 0.815 | 0.9 | | ϵ_{trig} | 0.983 | 0.1 | | total | | 16.9 | #### ► ε_{vertex}: - evaluated from CDC tracking efficiency - track multiplicities were considered. #### ε_{nabs}: neutron reaction loss before the NC - evaluated from ε_{NC}. - NC thickness ~ 36 g. Material between FF-NC ~ 7 g. - 20% systematic error assigned. - ► A_{NC}: NC geometrical acceptance at the first layer. - Error from uncertainty in the relative position ~ 1 cm. # J-PARC ### Locates in Tokai, Ibaraki ## Kaon beam quality @ J-PARC K1.8BR ### **KEK-PS E549** ## ⁴He(stopped K⁻,p) Fig. 5. The missing mass spectrum from the ${}^4\text{He}(K_{\text{stc}}^-)$ inclusive measurement. The systematic error of the ord cent relative error. The upper figure shows the overall in the present experiment. ## ⁴He(stopped K⁻,p) Error bar が見えないほどの高統計 Fig. 5. The missing mass spectrum from the ${}^{4}\text{He}(K_{\text{stc}}^{-})$ Upper limits for the narrow deeply bound status