

Hadron Physics at J-PARC

Shin'ya Sawada 澤田 真也 KEK

(High Energy Accelerator Research Organization, Japan)

February 10, 2014

- J-PARC and Hadron Experimental Facility (Hadron Hall)
- n Physics overview
- n Fruits so far obtained
- n High-momentum beam line
- n Extension
- n Summary

Experimental Areas

Hadron Exp.

Facility

50 Gel/ c

Linac

Ge

Synchrotron

Neutrino Beams

(to Kamioka)

Bird's eye photo in January of 2008

- J-PARC and Hadron Experimental Facility (Hadron Hall)
- n Physics overview
- n Fruits so far obtained
- n High-momentum beam line
- n Extension
- n Summary

- **n** So far there are only low-momentum beam lines.
- n Strangeness nuclear physics
 - With (pi, K), (K, pi), and (K-, K+) reactions
- n Other hadron physics
 - Many strangeness related, but a few non-strange.
- n Low Momentum Secondary Beams
 - Pions and Kaons <2 GeV/c at K1.8 beam line
 - Momentum was selected so that the production cross section of the Xsi baryon is at the maximum.
 - Major goal is S=-2 hypernuclei (Xsi nuclei and double-Lambda nuclei).
 - Used also for (pi, K) reaction for single hypernuclei.
 - Pions and Kaons <1.1GeV/c at K1.8BR and K1.1 beam line
 - Single Lambda hypernuclei
 - Gamma ray spectroscopy
 - Search for K-pp bound states
- n Neutral kaon beams: KOTO

Three Dimensional Nuclear Chart

- n E19 (published): Pentaquark search
- E10 (published): Neutron-rich hypernuclei with double-charge exchange
- n E13 (coming soon): Gamma ray spectroscopy of hypernuclei
- E15 (took some data): Search for K⁻+p+p bound state
- **n** ... (many waiting)

- J-PARC and Hadron Experimental Facility (Hadron Hall)
- n Physics overview
- n Fruits so far obtained
- n High-momentum beam line
- n Extension
- n Summary

E19: Pentaquark Search

TOF

BC4

Beam Drift Chamber3

(BC3)

Beam

Lucite

Cerenkov

LH2 Target

SDC3

SKS Magr

-SDC2

Spectrometer

Drift Chamber

Hodoscope2

(SDC1)

- **n** search for Θ^+ in $p(\pi^-, K^-)$
- target : liquid H2, 0.86g/cm2
- at K1.8 beamline + SKS
- **n** beam momentum :
 - $p_{\pi} = (1.87, 1.92, 2.00 \text{GeV/c})$
- **n** 4.8 x 10¹¹ p on target for each p_{π}
 - **n** beam intensity : 10⁷/spill(2sec.)
 - beam time : 160 hours

Yield : 10⁴ events for each momentum Sensitivity : 75nb/sr à confirm the existence of Θ⁺

E19 took the first physics data with p=1.92 GeV/c in Oct/Nov, 2010, and p=2.0 GeV/c in Feb, 2012. KS: ideal for + detection large acceptance : 0.1sr M = 2.5MeV FWHM

MWPC2

PRL 109, 132002 (2012)

PHYSICAL REVIEW LETTERS

week ending 28 SEPTEMBER 2012

Search for the Θ^+ Pentaquark via the $\pi^- p \to K^- X$ Reaction at 1.92 GeV/c

K. Shirotori,^{1,2,*,†} T. N. Takahashi,³ S. Adachi,⁴ M. Agnello,^{5,6} S. Ajimura,⁷ K. Aoki,⁸ H. C. Bhang,⁹ B. Bassalleck,¹⁰ E. Botta,^{11,6} S. Bufalino,⁶ N. Chiga,¹ P. Evtoukhovitch,¹² A. Feliciello,⁶ H. Fujioka,⁴ F. Hiruma,¹ R. Honda,¹ K. Hosomi,¹ Y. Ichikawa,⁴ M. Ieiri,⁸ Y. Igarashi,⁸ K. Imai,² N. Ishibashi,¹³ S. Ishimoto,⁸ K. Itahashi,¹⁴ R. Iwasaki,⁸ C. W. Joo,⁹ M. J. Kim,⁹ S. J. Kim,⁹ R. Kiuchi,⁹ T. Koike,¹ Y. Komatsu,³ V. V. Kulikov,¹⁵ S. Marcello,^{11,6} S. Masumoto,³ K. Matsuoka,¹³ K. Miwa,¹ M. Moritsu,⁴ T. Nagae,⁴ M. Naruki,⁸ M. Niiyama,⁴ H. Noumi,¹⁶ K. Ozawa,⁸ N. Saito,⁸ A. Sakaguchi,¹³ H. Sako,² V. Samoilov,¹² M. Sato,¹ S. Sato,² Y. Sato,⁸ S. Sawada,⁸ M. Sekimoto,⁸ H. Sugimura,⁴ S. Suzuki,⁸ H. Takahashi,⁸ T. Takahashi,⁸ H. Tamura,¹ T. Tanaka,¹³ K. Tanida,^{9,2} A. O. Tokiyasu,⁴ N. Tomida,⁴ Z. Tsamalaidze,¹² M. Ukai,¹ K. Yagi,¹ T. O. Yamamoto,¹ S. B. Yang,⁹ Y. Yonemoto,¹ C. J. Yoon,⁹ and K. Yoshida¹³

No significant peak was observed.

FIG. 2 (color). The missing mass spectrum and the background shape for the $\pi^- p \rightarrow K^- X$ reaction at 1.92 GeV/c. The black points with error bars are the experimental data. The contribution of the simulated background is indicated by the red histogram.

n How far can we extend the hypernucler chart?

- Importance of the "glue-like role" of the L hyperon.
- LN interaction may stabilize the host nucleus.

Physics Letters B 729 (2014) 39-44

Search for ${}^{6}_{\Lambda}$ H hypernucleus by the 6 Li(π^{-}, K^{+}) reaction at $p_{\pi^{-}} = 1.2 \text{ GeV}/c^{2}$

J-PARC E10 Collaboration

H. Sugimura ^{a,b,*}, M. Agnello ^{c,d}, J.K. Ahn ^e, S. Ajimura ^f, Y. Akazawa ^g, N. Amano ^a, K. Aoki ^h, H.C. Bhang ⁱ, N. Chiga ^g, M. Endo ^j, P. Evtoukhovitch ^k, A. Feliciello ^d, H. Fujioka ^a, T. Fukuda ^l, S. Hasegawa ^b, S. Hayakawa ^j, R. Honda ^g, K. Hosomi ^g, S.H. Hwang ^b, Y. Ichikawa ^{a,b}, Y. Igarashi ^h, K. Imai ^b, N. Ishibashi ^j, R. Iwasaki ^h, C.W. Joo ⁱ, R. Kiuchi ^{i,b}, J.K. Lee ^e, J.Y. Lee ⁱ, K. Matsuda ^j, Y. Matsumoto ^g, K. Matsuoka ^j, K. Miwa ^g, Y. Mizoi ^l, M. Moritsu ^f, T. Nagae ^a, S. Nagamiya ^b, M. Nakagawa ^j, M. Naruki ^a, H. Noumi ^f, R. Ota ^j, B.J. Roy ^m, P.K. Saha ^b, A. Sakaguchi ^j, H. Sako ^b, C. Samanta ⁿ, V. Samoilov ^k, Y. Sasaki ^g, S. Sato ^b, M. Sekimoto ^h, Y. Shimizu ^l, T. Shiozaki ^g, K. Shirotori ^f, T. Soyama ^j, T. Takahashi ^h, T.N. Takahashi ^o, H. Tamura ^g, K. Tanabe ^g, T. Tanaka ^j, K. Tanida ⁱ, A.O. Tokiyasu ^f, Z. Tsamalaidze ^k, M. Ukai ^g, T.O. Yamamoto ^g, Y. Yamamoto ^g, S.B. Yang ⁱ, K. Yoshida ^j

E10: Spectroscopy of neutron-rich L hypernucleus ⁵_LH by double charge exchange (p⁻,K⁺) reaction

•Production by the ⁶Li(p⁻,K⁺) reaction data-taking during Dec.2012 - Jan. 2013.1 K1.8 beam line + SKS ($p_p=1.2GeV/c$, DM=3.2MeV/c²(FWHM)) 12 - 14M p⁻/spill (2.0sec) beam (D.F.~40%) $1.65 \times 10^{12} \text{ p}^{-1}$ on Target c.f. 3×10^{12} (proposal) e ~ 50% due to multi-track (pile-up) event (bad D.F.) No peak structure was observed around ⁴, H+2n threshold ⁶Li(p⁻,K⁺) U.L. 1.2nb/sr (90%CL) • Phys. Lett. B 729 (2014) 39 l²σ_{lab}/dΩ/dM [nb/sr/(MeV/c²) o_{lab}/dΩ/dM [nb/sr/(MeV/ S 30 **a** Talk by Sakaguchi-san. 5840 20 Missing Mass [MeV/c2] $10 - \theta_{lab} = 2^{\circ} - 14^{\circ}$

5900

5850

Missing Mass [MeV/c²]

- J-PARC and Hadron Experimental Facility (Hadron Hall)
- n Physics overview
- n Fruits so far obtained
- n High-momentum beam line
- n Extension
- n Summary

- n "High-momentum beam line" (+ COMET beam line) has been funded!
- n High-momentum primary proton beam (30GeV)
 - Meson mass modification inside nuclei
 - Dilepton measurement for nucleon and baryon structure
- n High-momentum meson (pion) beam (~<15 GeV/c)</p>
 - Pion-induced Drell-Yan?
 - Baryon spectroscopy with pion beams.

High-p and COMET

- New primary Proton Beam Line
 - = High-momentum BL + COMET BL
- n High-momentum Beam Line
 - Primary protons (~ $10^{10} 10^{12}$ pps)
 - E16 (phi meson) is considered to be the first experiment.
 - Unseparated secondary particles (pi, ...)
 - High-resolution secondary beam by adding several quadrupole and sextupole magnets.
- n COMET
 - Search for mto e conversion
 - 8 GeV, 50 kW protons
 - Branch from the high-momentum BL
 - Annex building will be built at the south side.

High-p Line and E16 Spectrometer

(C) Possible hadron exps at high-momentum BL

- n Sea quark structure through Drell-Yan measurement
 - Currently the E906/SeaQuest is running at Fermilab with 120-GeV protons to see d-bar/u-bar asymmetry.
 - Larger x possible with 50-GeV protons at J-PARC.
 - J-PARC is currently operated with 30-GeV and there are no demands of 50-GeV operation from other experiments, which needs modification of a part of the accelerator components.
 - There could be other possibilities of physics with dimuon measurement such as,
 - J/Psi measurements to see the nucleon sea,
 - dimuons from pion/kaon induced reactions to see meson-like substructure of a nucleon.
- n Spin related quantities
 - Polarized beam relatively far future.
 - Polarized target would be available in the near future.
 - Measurement such as Bohr-Mulders can be carried out even with unpol. Drell-Yan measurements.

Gluon distributions in proton and neutron are very similar at 800 GeV. At much lower energies, J/Psi might be produced by q-qbar annihilation. **a** Azimuthal angle dependence. If J/Psi production is q-qbar annihilation, J/Psi becomes a tool to investigate quark structure of nucleon at lower energies.

beam loss limit @ SM1:15kW (limited by the thickness of the tunnel wall)

Exclusive Pion-Induced Drell-Yan Process Bernard Pire, IWHS2011 small $t = (q - q \phi)^2$ large $t = (q - q \phi^2)$ N' $\pi(q)$ $g^*(q\phi)$ $x+\eta$ $\widetilde{H}, \widetilde{E}$ NN(p)N(p') f_{p} : pion distritution amplitude (DA) TDA : *p*-N transistion distritribution amplitude DA characterizes the minimal TDA characterizes the nextvalence Fock state of hadrons. to-minimal valence Fock state •DA of pion are also explored of hadrons. by pion-photon transition form TDA of pion-nucleon is factor in Belle and Barbar Exps. related to the pion cloud of nucleons.

a Talk by Wen-Chen

- J-PARC and Hadron Experimental Facility (Hadron Hall)
- n Physics overview
- n Fruits so far obtained
- n High-momentum beam line
- n Extension
- n Summary

Hadron Hall Extension

- **n** Extend the Hadron Hall for ~105m.
- n Construct 2 production targets with beam lines.

- Hadron Hall extension has been proposed to the Science Council of Japan for their recommendation as a next big project.
- n The Institute of Particle and Nuclear Studies, KEK, is starting the discussion for future projects (ILC, neutrino, and Hadron extension) at the research program committee.
- We need a story so that scientists of neighboring fields can understand the importance of the field and the extension!
 - Where we are, and what can be achieved by a new experiment / project?

- Physics experiments started at the Hadron Hall of J-PARC, and the first physics papers have been published from the E19 and E10 experiments. So far experiments with lower momentum pions/kaons are being carried out.
- n The funding for the high-momentum beam line with COMET was approved by the government. The construction starts. Mass shift of phi meson would be the first experiment, and other experiments are being discussed.
- J-PARC is now very busy to respond to the accident. But we certainly renovate the facility to resume research activities in the near future.
- n Discussion on the extension is active. In order to convince people of neighboring fields, your help is essential!