Structure of $\Lambda(1405)$ -- How to determine it in experiments --

Takayasu SEKIHARA (KEK)

in collaboration with

Hiroyuki KAWAMURA and Shunzo KUMANO (KEK)

- [1] H. Kawamura, S. Kumano, and T. S., *Phys. Rev.* <u>D88</u> (2013) 034010.
- [2] T. S. and S. Kumano, *Phys. Rev.* <u>C</u> (2014), in press [arXiv:1311.4637 [nucl-th]].

Contents

- 1. Introduction
- 2. $\Lambda(1405)$ production in hard exclusive process
- 3. Compositeness of $\Lambda(1405)$ from its radiative decay
- 4. Summary

++ Exotic hadrons and their structure ++

- **Exotic hadrons** --- not same quark component as ordinary hadrons = not qqq nor $q\overline{q}$.
- --- Compact multi-quark systems, hadronic molecules, glueballs, ...
 - \Box Candidates: $\Lambda(1405)$, the lightest scalar mesons, XYZ, ...
- $\Lambda(1405)$ --- Mass = 1405.1 ^{+1.3}_{--1.0} MeV, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), $I(J^P)$ = 0 (1/2--). Particle Data Group

A(1405) 1/2

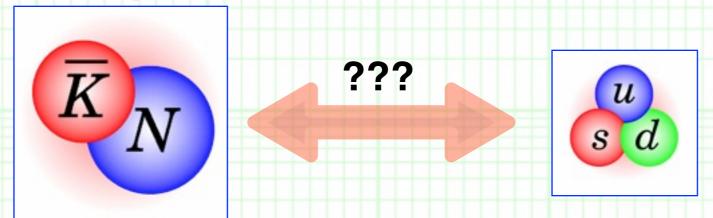
$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass $m=1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma=50\pm2$ MeV Below \overline{K} N threshold

A(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

++ Exotic hadrons and their structure ++

- **Exotic hadrons** --- not same quark component as ordinary hadrons = not qqq nor $q\overline{q}$.
- --- Compact multi-quark systems, hadronic molecules, glueballs, ...
 - Candidates: $\Lambda(1405)$, the lightest scalar mesons, XYZ, ...
- $\Lambda(1405)$ --- Mass = 1405.1 ^{+1.3}_{-1.0} MeV, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), $I(J^P)$ = 0 (1/2-). Particle Data Group
- Why is $\Lambda(1405)$ the lightest excited baryon with $J^P = 1/2$ —?
- --- $\Lambda(1405)$ contains a strange quark, which should be $\sim 100 \text{ MeV}$ heavier than up and down quarks.
 - \square Strongly attractive \overline{KN} interaction in the I=0 channel.
 - --> $\Lambda(1405)$ is a KN quasi-bound state ??? Dalitz and Tuan ('60), ...



++ Dynamically generated $\Lambda(1405)$ ++

The chiral unitary model (ChUM) reproduces low-energy Exp. data and dynamically generates $\Lambda(1405)$ in meson-baryon degrees of f.

Kaiser-Siegel-Weise ('95), Oset-Ramos ('98), Oller-Meissner ('01), Jido et al. ('03), ...

$$T ext{-matrix} =$$

$$T_{ij}(s) = V_{ij} + \sum_{k} V_{ik} G_k T_{kj}$$

$$= \sum_{k} V_{ik} G_k T_{kj}$$

--- Bethe-Salpeter Eq.

--- Spontaneous chiral symmetry breaking + Scattering unitarity.

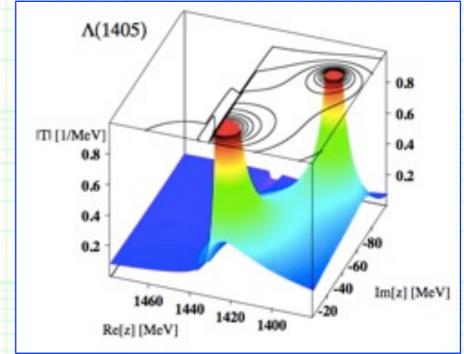
 $\Lambda(1405)$ in $KN-\pi\Sigma-\eta\Lambda-K\Xi$ coupled-channels.

Prediction: Two poles for $\Lambda(1405)$ are dynamically generated.

Jido et al., Nucl. Phys. A725 (2003) 181.

--- One of the poles (around 1420 MeV) originates from KN bound state.

Hyodo and Weise, *Phys. Rev.* C77 (2008) 035204.



++ Determine hadron structures ++

How can we determine the structure of hadrons in Exp. ?

$$|\Lambda(1405)\rangle = C_{uds}|uds\rangle + C_{\bar{K}N}|\bar{K}\rangle \otimes |N\rangle + C_{uud\bar{u}s}|uud\bar{u}s\rangle + \cdots$$

- Spatial structure (= spatial size).
- --- Loosely bound hadronic molecules will have large spatial size.

T. S., T. Hyodo and D. Jido, *Phys. Lett.* <u>B669</u> (2008) 133; *Phys. Rev.* <u>C83</u> (2011) 055202; T. S. and T. Hyodo, *Phys. Rev.* <u>C87</u> (2013) 045202.

- "Count" quarks inside hadron by using some special condition.
- --- Scaling law for the quark counting rule in high energy scattering.

H. Kawamura, S. Kumano and T. S., Phys. Rev. <u>D88</u> (2013) 034010.

□ Compositeness X = amount of two-body state inside system. cf. Deuteron is a proton-neutron bound state, not elementary.

Weinberg, *Phys. Rev.* 137 (1965) B672; Hyodo, Jido and Hosaka, *Phys. Rev.* C85 (2012) 015201; T. S., T. Hyodo and D. Jido, in preparation.

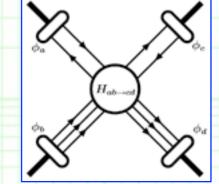
2. $\Lambda(1405)$ production in hard exclusive process

++ Counting rule for constituent quarks ++

■ The constituent counting rule emerges in exclusive reactions

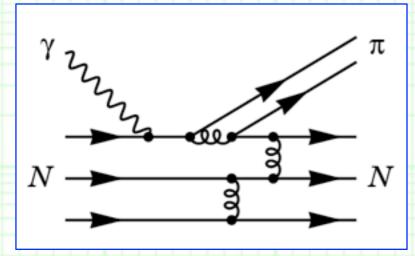
at high energy and high momentum transfer region:

$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$



Brodsky and Farar ('73, '75); Matveev et al. ('73).

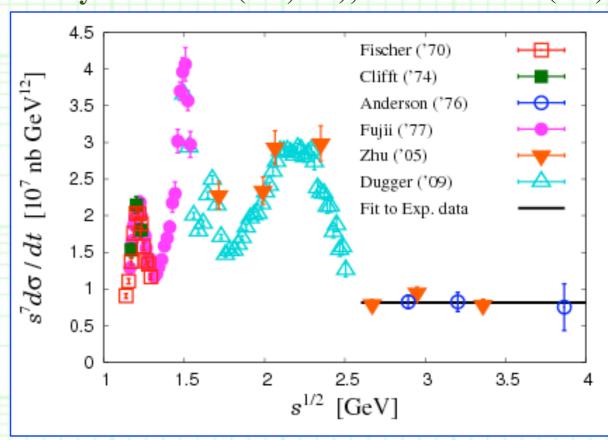
Example: $\gamma p \longrightarrow \pi^+ n$ at $\theta_{cm} = 90^\circ$.



$$n = 1 + 3 + 2 + 3$$

= 9.

--- At High energy and high momentum transfer region, propagators scales as ~ 1/t~1/u~1/s.



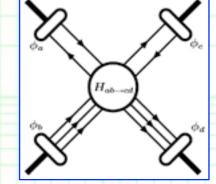
L.Y. Zhu et al., Phys. Rev. Lett. <u>91</u> (2003) 022003; H. Kawamura, S. Kumano, and T. S. (2013).

++ Counting rule for constituent quarks ++

■ The constituent counting rule emerges in exclusive reactions

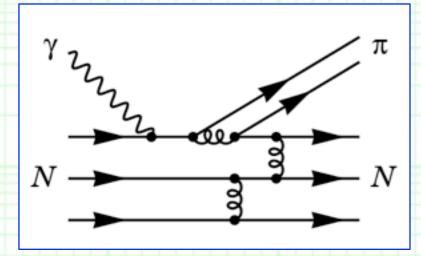
at high energy and high momentum transfer region:

$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$



Brodsky and Farar ('73, '75); Matveev et al. ('73).

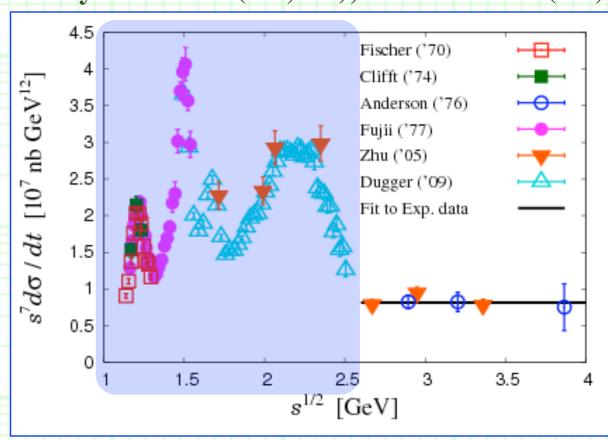
Example: $\gamma p \longrightarrow \pi^+ n$ at $\theta_{cm} = 90^\circ$.



$$n = 1 + 3 + 2 + 3$$

= 9.

--- At High energy and high momentum transfer region, propagators scales as ~ 1/t~1/u~1/s.



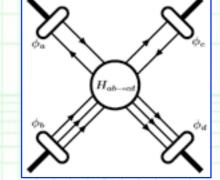
L.Y. Zhu et al., Phys. Rev. Lett. <u>91</u> (2003) 022003; H. Kawamura, S. Kumano, and T. S. (2013).

++ Counting rule for constituent quarks ++

■ The constituent counting rule emerges in exclusive reactions

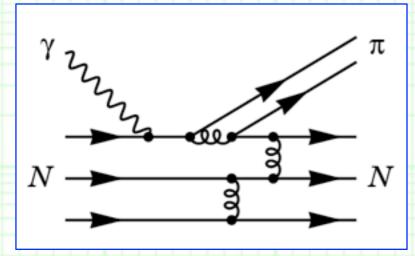
at high energy and high momentum transfer region:

$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$



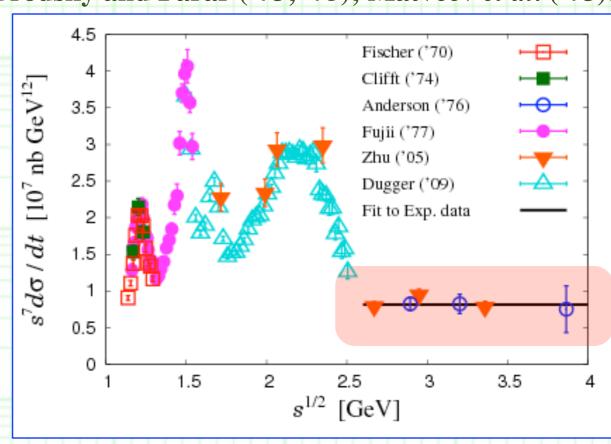
Brodsky and Farar ('73, '75); Matveev et al. ('73).

Example: $\gamma p \longrightarrow \pi^+ n$ at $\theta_{cm} = 90^\circ$.



$$n = 1+3+2+3$$
 $= 9$.

--- At High energy and high momentum transfer region, propagators scales as ~ 1/t~1/u~1/s.



L.Y. Zhu *et al.*, *Phys. Rev. Lett.* <u>91</u> (2003) 022003; H. Kawamura, S. Kumano, and T. S. (2013).

++ Counting rule for constituent quarks ++

 The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

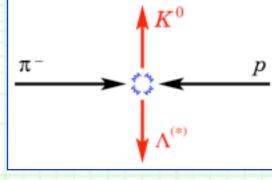
$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$

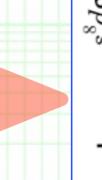
Brodsky and Farar ('73, '75); Matveev et al. ('73).

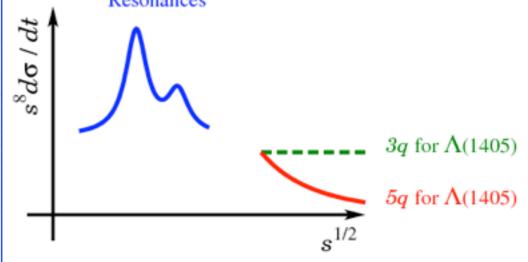
■ Then how cross section of π^-p --> $K^0\Lambda(1405)$ at $\theta_{cm}=90^\circ$ behaves at high energy and high momentum transfer region?

--- And how it differs from cross section of π -- p --> K^0 Λ at $\theta_{\rm cm} = 90^{\circ}$?

$$\begin{array}{c}
? \\
n = 2+3+2+3 = 10.
\end{array}$$







++ Counting rule for constituent quarks ++

The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

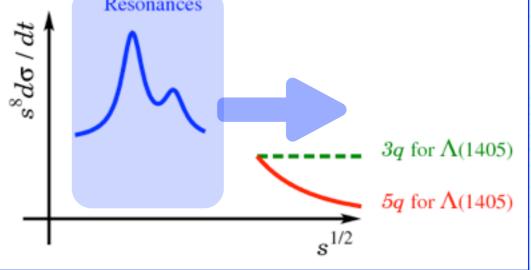
$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$

Brodsky and Farar ('73, '75); Matveev et al. ('73).

- Then how cross section of π^-p --> $K^0\Lambda(1405)$ at $\theta_{cm}=90^\circ$ behaves at high energy and high momentum transfer region?
- --- And how it differs from cross section of π -- p --> K^0 Λ at $\theta_{\rm cm} = 90^\circ$?

$$\frac{?}{n = 2+3+2+3 = 10}$$

$$\frac{\pi^{-}}{\bigwedge^{(*)}}$$



--> We "estimate" cross section of π " p --> K^0 $\Lambda(1405)$ at $\theta_{\rm cm} = 90^\circ$ as a function of s from the resonance region to the pQCD one.

++ Ground A production: Experimental data ++

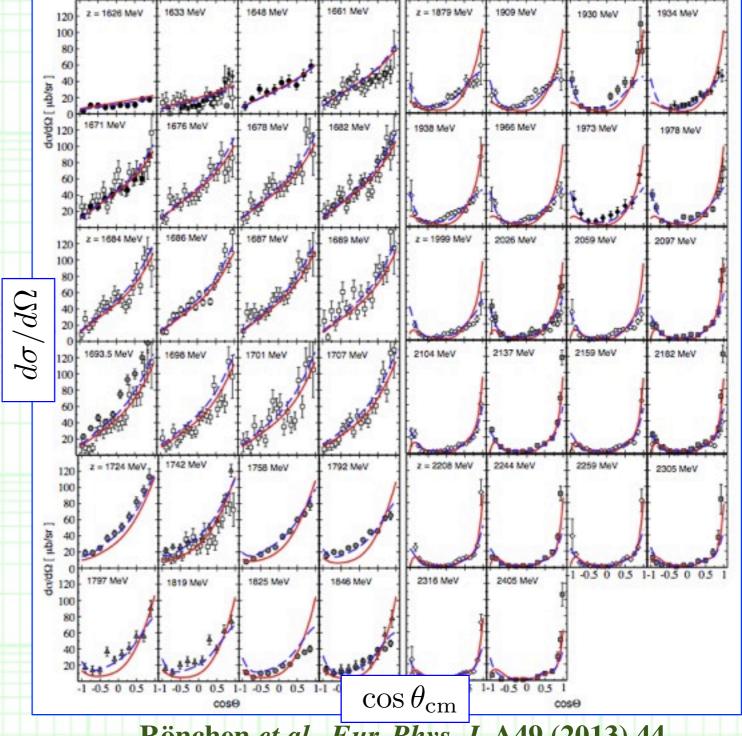
First of all we consider

 $\pi^- p \longrightarrow K^0 \Lambda$ reaction.

--- Exp. data in wide energy range have been taken in 1960's ~ 1980's:

 $\sqrt{s} = [1.6 \text{ GeV}, 2.4 \text{ GeV}].$

Bertanza ('62); Yoder ('63); Goussu ('66); Dahl ('69); **Binford** ('69); **Knasel** ('75); Baker ('78); Saxon ('80).



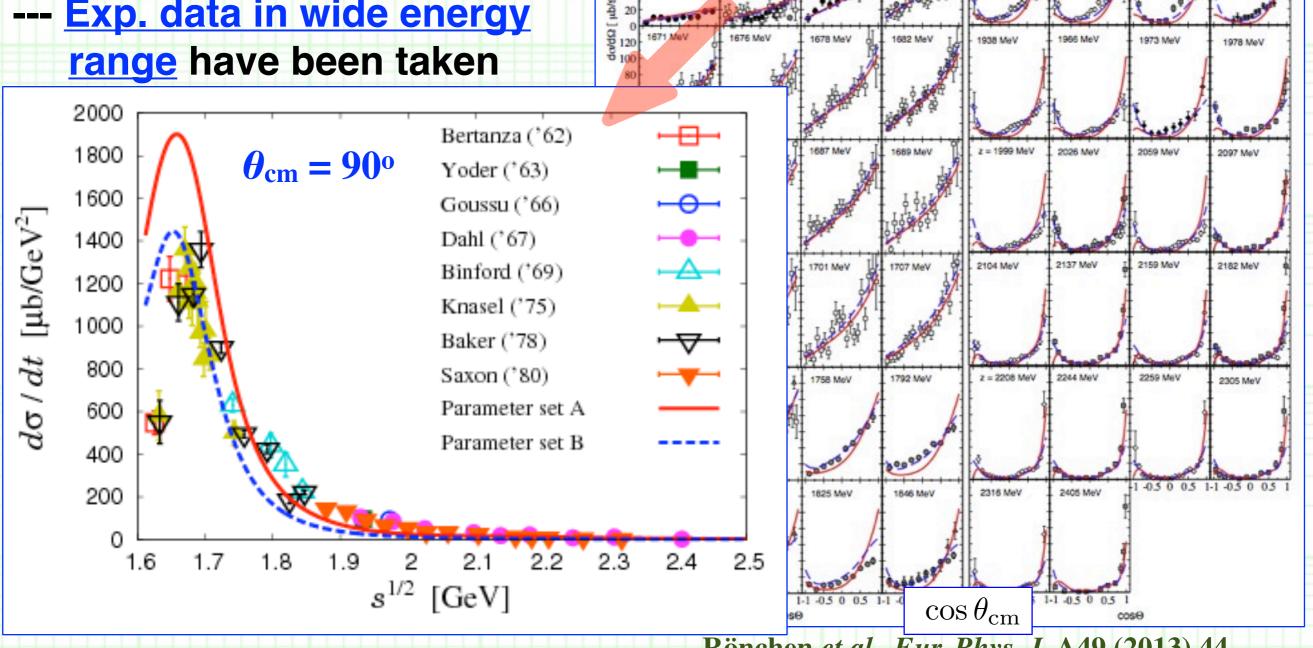
Rönchen et al., Eur. Phys. J. A49 (2013) 44.

++ Ground A production: Experimental data ++

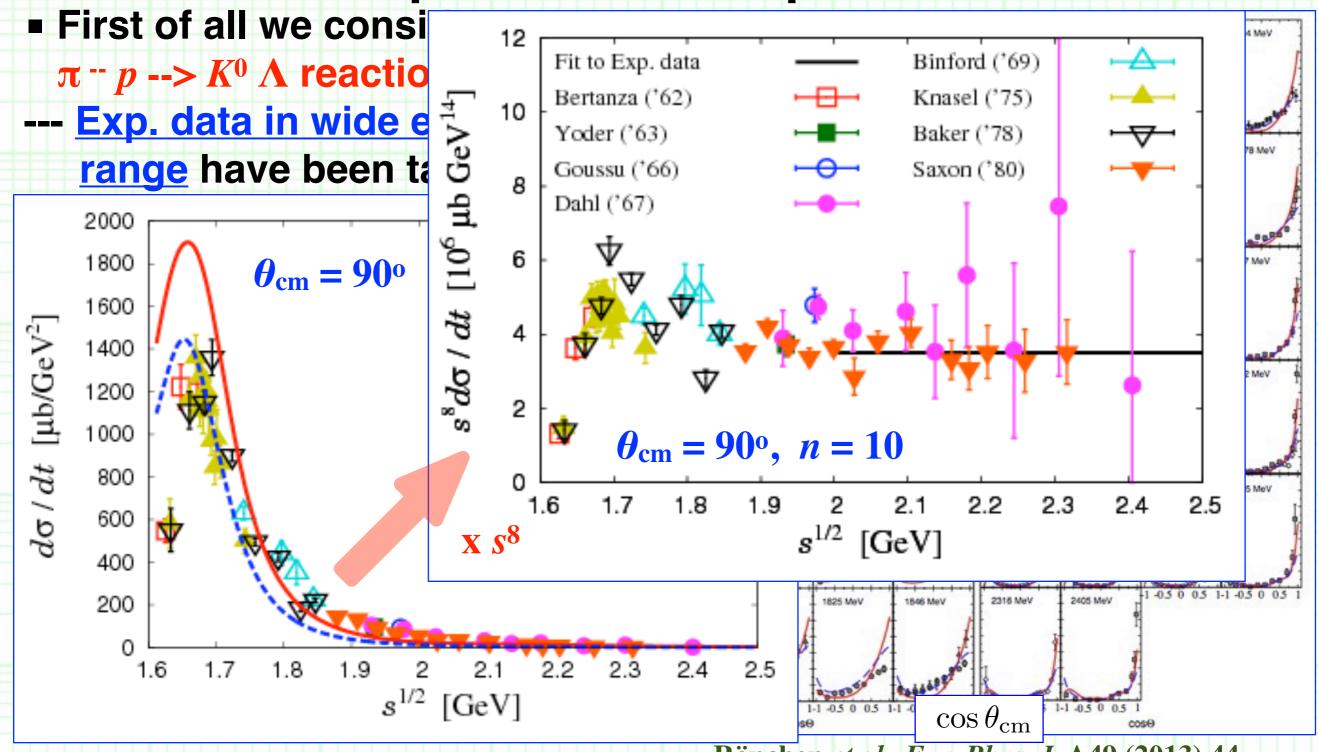
First of all we consider

 $\pi^{-}p \longrightarrow K^0 \Lambda$ reaction.

--- Exp. data in wide energy

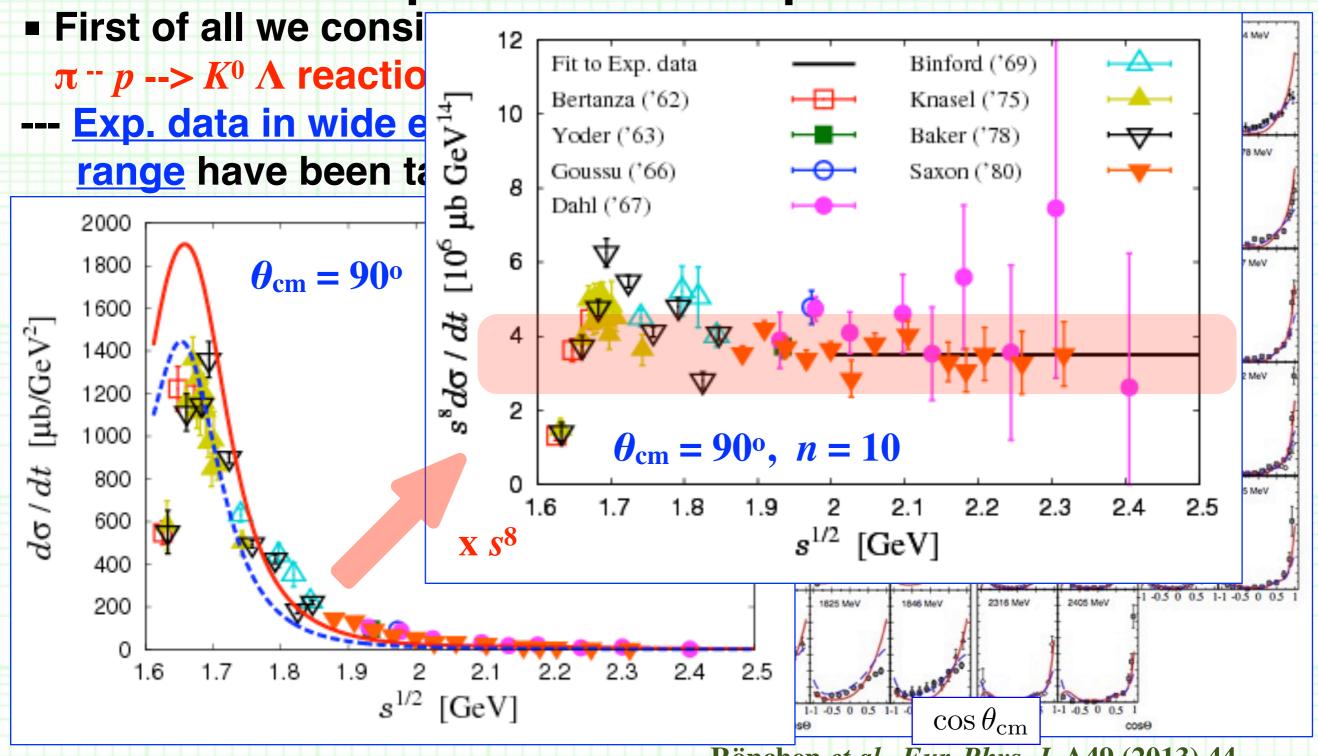


++ Ground A production: Experimental data ++



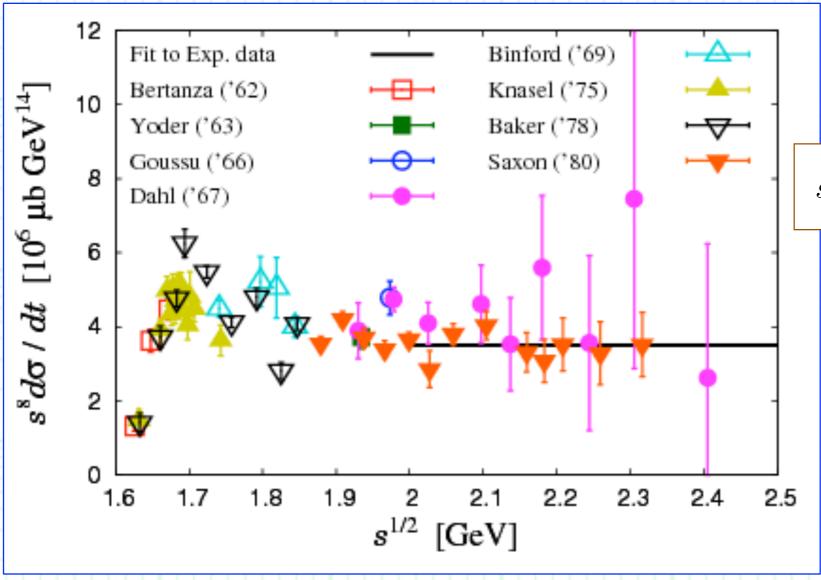
Rönchen et al., Eur. Phys. J. A49 (2013) 44.

++ Ground A production: Experimental data ++



++ Ground A production: Estimation ++

■ Estimate cross section of $\pi - p - > K^0 \Lambda$ reaction at higher energies.



□ Fitting the data $\frac{s^8 d\sigma / dt}{by a straight line}$ at $\sqrt{s} > 2.0$ GeV, we have:

$$s^8 \frac{d\sigma}{dt} = (3.50 \pm 0.21) \times 10^6 \mu \text{b GeV}^{14}$$

Fitting the datawith the expression

$$d\sigma / dt = (const.) \times s^{2-n}$$

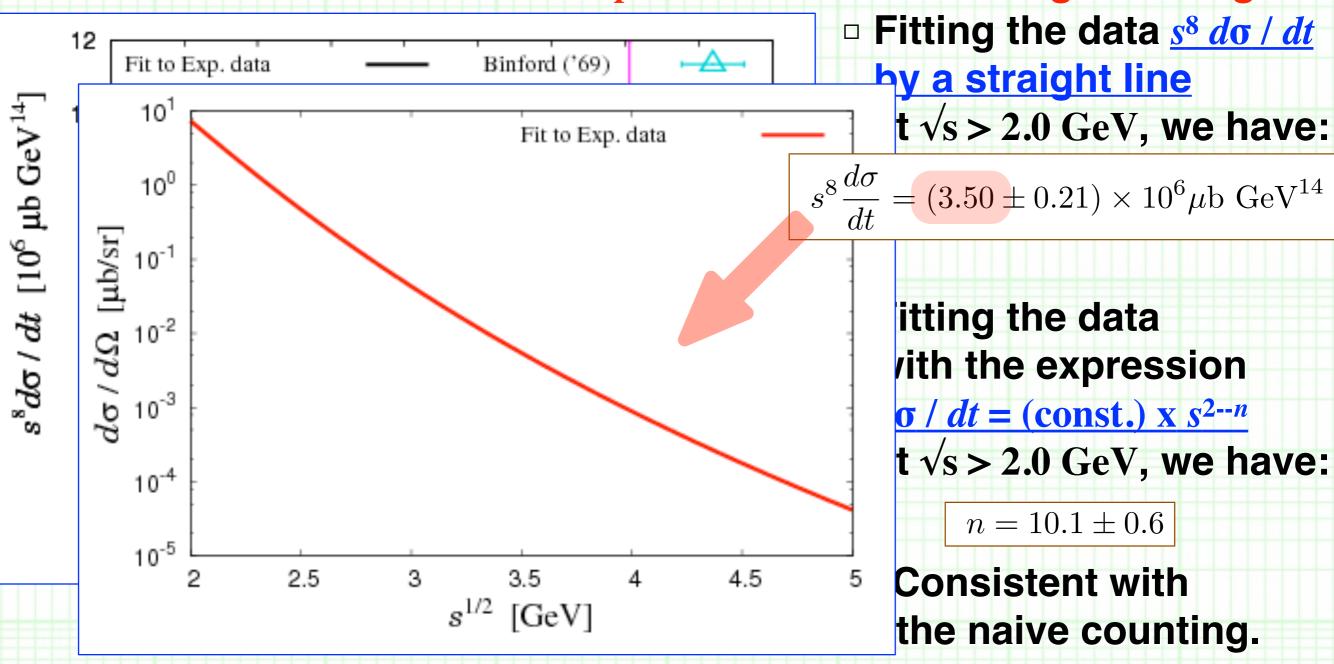
at $\sqrt{s} > 2.0$ GeV, we have:

$$n = 10.1 \pm 0.6$$

--- Consistent with the naive counting.

++ Ground A production: Estimation ++

■ Estimate cross section of $\pi - p --> K^0 \Lambda$ reaction at higher energies.

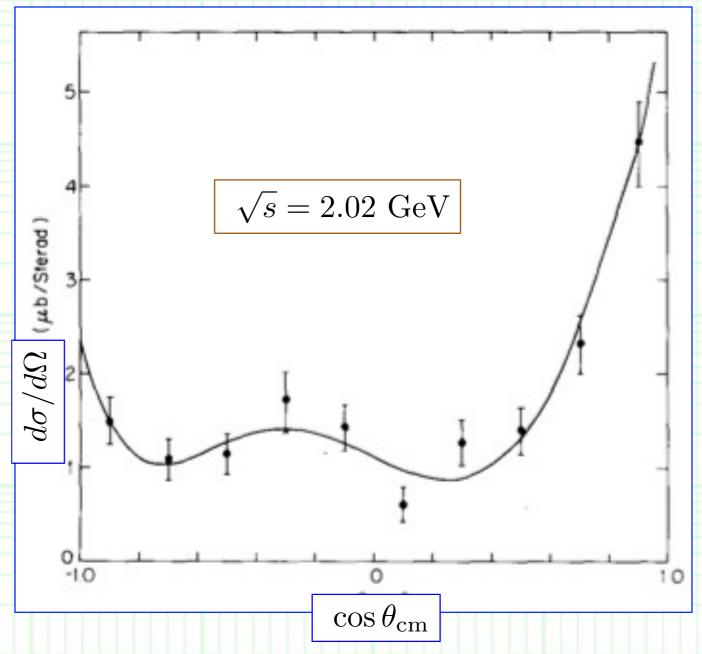


++ $\Lambda(1405)$ production: Experimental data ++

Next we consider

 $\pi - p \longrightarrow K^0 \Lambda(1405)$ reaction.

--- Very few Exp. data have been taken, and (as far as I know) only one data is available for $d\sigma / dt$ at $\theta_{cm} = 90^{\circ}$:



Thomas et al., Nucl. Phys. <u>B56</u> (1973) 15.

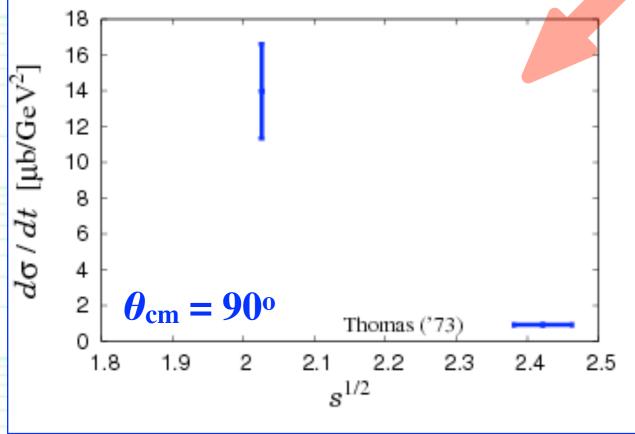
++ $\Lambda(1405)$ production: Experimental data ++

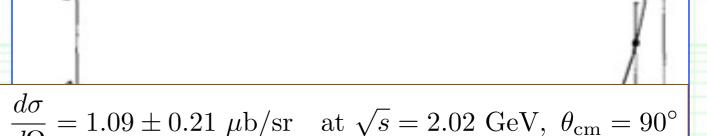
Next we consider

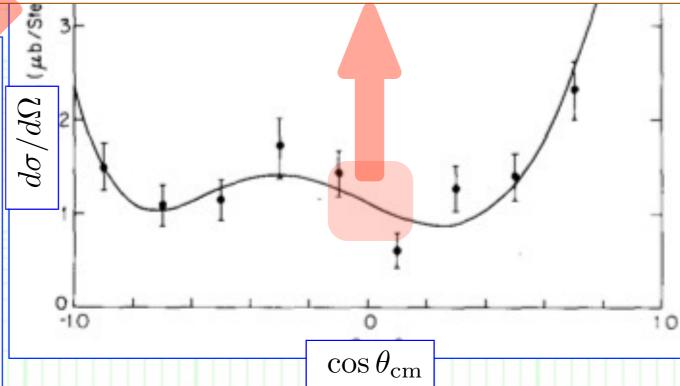
 $\pi - p \longrightarrow K^0 \Lambda(1405)$ reaction.

--- Very few Exp. data have been taken, and (as far as I know) only one data is available

for $d\sigma / dt$ at $\theta_{\rm cm} = 90^{\circ}$:

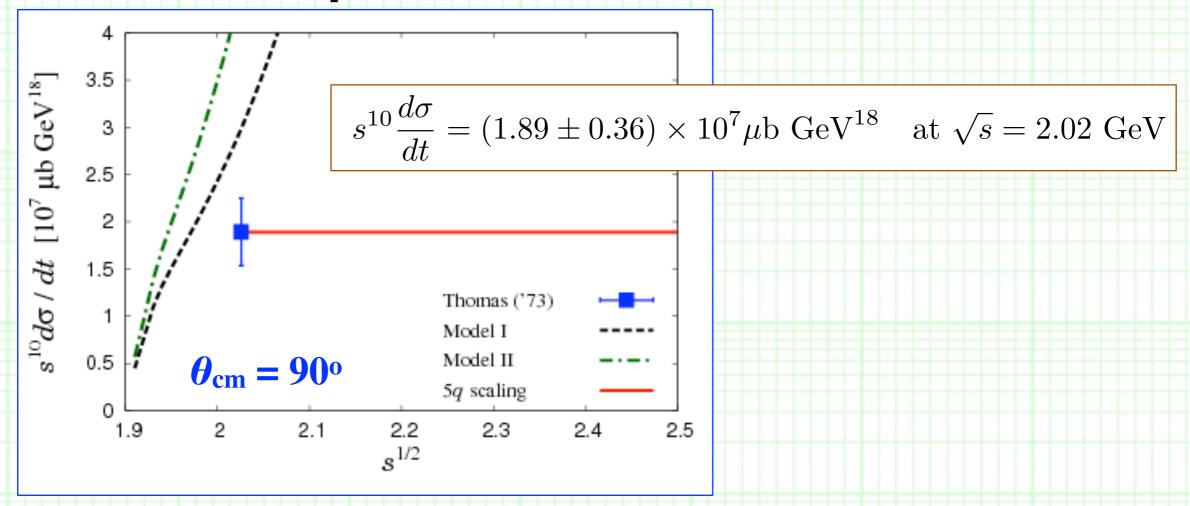






Thomas et al., Nucl. Phys. <u>B56</u> (1973) 15.

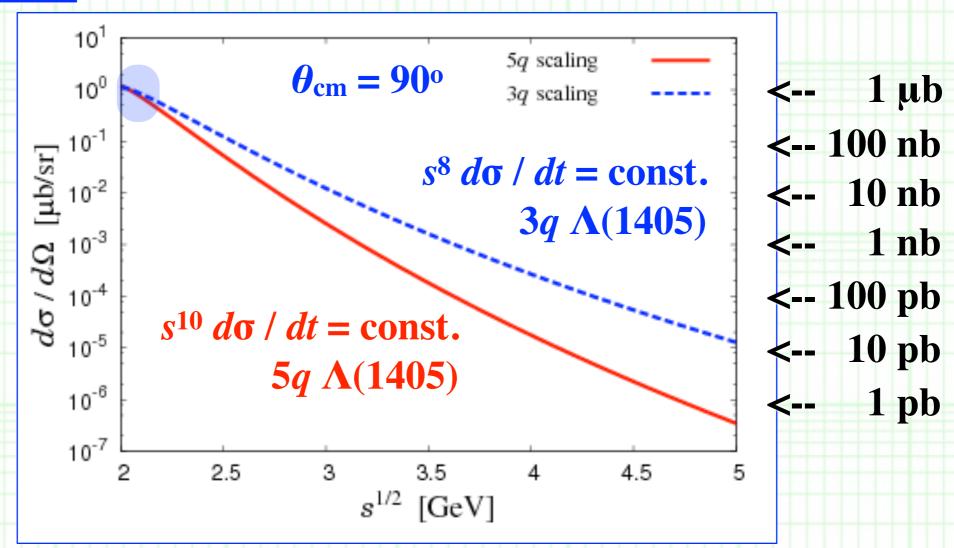
++ $\Lambda(1405)$ production: Estimation ++



- If $\Lambda(1405)$ is a 5q state (including a \overline{KN} molecule), the cross section scales as $s^{10} d\sigma / dt = \text{const.}$ (the red straight line).
- --- Theoretical calculation (Model I & II) of $\pi^- p --> K^0 \Lambda(1405)$ reaction from the chiral unitary model. Hyodo et al., Phys. Rev. C68 (2003) 065203.

++ $\Lambda(1405)$ production: Estimation ++

■ Estimate cross section at higher energies by using Exp. data at $\sqrt{s} = 2.02$ GeV with $s^{10} d\sigma / dt = \text{const.}$ or $s^8 d\sigma / dt = \text{const.}$



■ Ratio of the cross section for 3q and 5q $\Lambda(1405)$ is about 10:1 (~ 10 nb : 1 nb) at $\sqrt{s} = 3$ GeV and more at higher energies.

++ Summary of hard exclusive process ++

 The constituent counting rule in exclusive reactions at high energy with high momentum transfer may elucidate hadron structure.

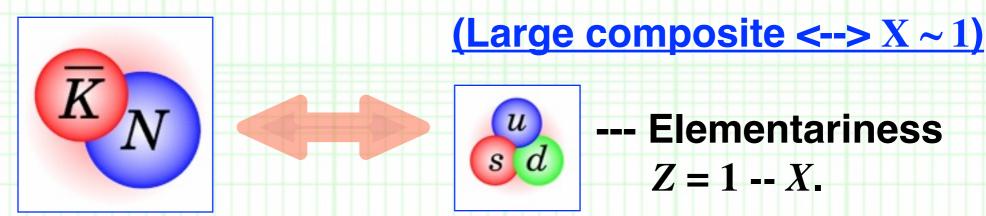
$$\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$$

- We estimate high-energy cross section $\pi^- p -> K^0 \Lambda(1405)$ at $\theta_{\rm cm} = 90^\circ$ as well as $\pi^- p -> K^0 \Lambda$ at $\theta_{\rm cm} = 90^\circ$ from resonance region.
 - □ Ground Λ production seems to show a scaling law with $n_q(\Lambda) = 3$.
 - --- $d\sigma/d\Omega$ at $\theta_{\rm cm}=90^{\rm o}$ is about 0.1 µb/sr for $\sqrt{\rm s}=3$ GeV, 10^{-3} µb/sr for $\sqrt{\rm s}=4$ GeV, and $10^{-4}\sim10^{-5}$ µb/sr for $\sqrt{\rm s}=5$ GeV.
 - □ For $\Lambda(1405)$, cross section for 3q (5q) $\Lambda(1405)$ is ~ 10 nb (1 nb) at $\sqrt{s} = 3$ GeV and the deviation gets larger at higher energies.
 - □ However, $\Lambda(1405)$ production data is few.
- --> Need both theoretical and experimental improvements to determine the $\Lambda(1405)$ structure. $\pi^-p --> K^{*0} \Lambda(1405)$ reaction?

3. Compositeness of $\Lambda(1405)$ from its radiative decay

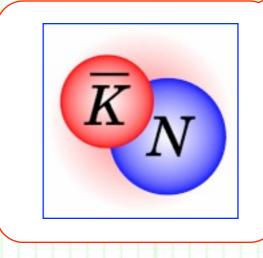
++ Compositeness ++

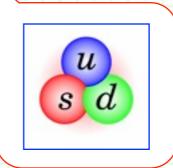
• Compositeness (X) = amount of the two-body components in a resonance as well as a bound state.



 Compositeness can be defined as the contribution of the two-body component to the normalization of the total wave function.

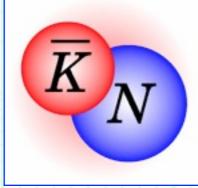
$$\langle \psi | \psi \rangle = X + Z = 1$$

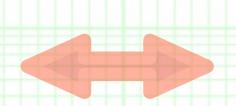


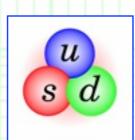


++ Compositeness ++

Compositeness (X) = a fraction of the two-body components in a resonance as well as a bound state.





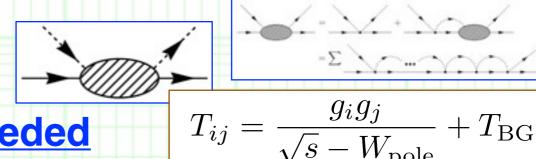


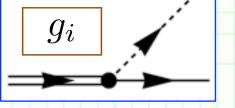
(Large composite <--> X ~ 1)

--- Elementarity
$$Z = 1 - \sum_i X_i$$

- Recently compositeness has been discussed in the context of the chiral unitary model.
- --- It is implied that the i-channel compositeness is expressed as:

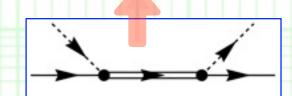
$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$





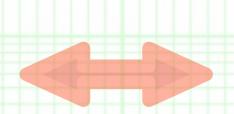
Cut-off is not needed for $dG/d\sqrt{s}$.

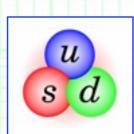
$$G_i(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_k^2 + i\epsilon} \frac{1}{(P - q)^2 - m_k'^2 + i\epsilon}$$



++ Compositeness ++

Compositeness (X) = a fraction of the two-body components in a resonance as well as a bound state.





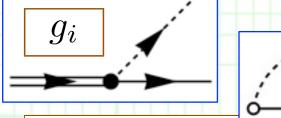
(Large composite <--> X ~ 1)

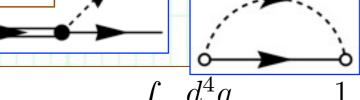
--- Elementarity $Z = 1 - \sum_i X_i$

- Recently compositeness has been discussed in the context of the chiral unitary model.
- --- It is implied that the i-channel compositeness is expressed as:

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

 $X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$ --> Compositeness can be determined from the coupling constant g_i and the pole position W_{pole} .

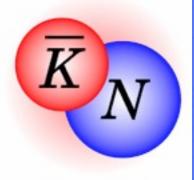


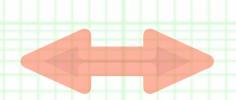


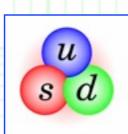
$$G_i(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_k^2 + i\epsilon} \frac{1}{(P - q)^2 - m_k'^2 + i\epsilon}$$

++ Compositeness ++

Compositeness (X) = a fraction of the two-body components in a resonance as well as a bound state.







(Large composite <--> X ~ 1)

--- Elementarity $Z = 1 - \sum X_i$

$$Z = 1 - \sum_{i} X_{i}$$

- Recently compositeness has been discussed in the context of the chiral unitary model.
- --- It is implied that the i-channel compositeness is expressed as:

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

- \Box Compositeness of $\Lambda(1405)$ in the chiral unitary model:
- --> Large *KN* component for (higher) $\Lambda(1405)$!

Hyodo, Jido and Hosaka, Phys. Rev. C85 (2012) 015201

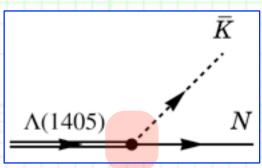
	$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole
$\overline{W_{\mathrm{pole}}}$	1391 - 66i MeV	1426 - 17i MeV
$X_{ar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i
$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i
$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i
$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i
Z	0.86 - 0.40i	0.00 + 0.09i

T. S. and T. Hyodo, *Phys. Rev.* <u>C87</u> (2013) 045202.

++ Compositeness in experiments ++

■ How can we determine compositeness of $\Lambda(1405)$ in experiments ?

$$X_i = -g_i^2 \frac{dG_i}{d\sqrt{s}} (\sqrt{s} = W_{\text{pole}})$$

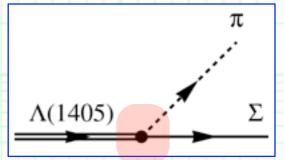


Pole position from PDG values:

$$W_{\text{pole}} = M_{\Lambda(1405)} - i \Gamma_{\Lambda(1405)} / 2 \text{ with } M_{\Lambda(1405)} = 1405 \text{ MeV}, \Gamma_{\Lambda(1405)} = 50 \text{ MeV}.$$

□ Coupling constant $g_{\pi\Sigma}$ from $\Lambda(1405)$ --> $\pi\Sigma$ decay width:

$$\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{\text{cm}} M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV}$$
 -> $|g_{\pi\Sigma}| = 0.91$.



- --> We obtain $|X_{\pi\Sigma}| = 0.19$ --- Not small, but not large.
- × Unfortunately, one cannot directly determine the \overline{KN} coupling constant in Exp.; $\Lambda(1405)$ cannot decay to \overline{KN} .
- Reactions sensitive to the \overline{KN} coupling ? <-- The radiative decay !

++ Radiative decay of $\Lambda(1405)$ ++

- There is an "experimental" value of the $\Lambda(1405)$ radiative decay:

 $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

There are also several theoretical studies on the radiative decay:

Geng, Oset and Döring, Eur. Phys. J. <u>A32</u> (2007) 201.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole are separated by a comma.

Decay channel	$U\chi PT$	$\chi \mathrm{QM} \ [35]$	BonnCQM [36]	NRQM	RCQM [39]
$\gamma \Lambda$	16.1, 64.8	168	912	143 [37], 200, 154 [38]	118
$\gamma \Sigma^0$	73.5, 33.5	103	233	91 [37], 72, 72 [38]	46
Decay channel	MIT bag [38]	Chiral bag [40]	Soliton [41]	Algebraic model [42]	Isobar fit [23]
$\gamma \Lambda$	60, 17	75	44,40	116.9	27 ± 8
$\gamma \varSigma^0$	18, 2.7	1.9	13,17	155.7	10 ± 4 or 23 ± 7

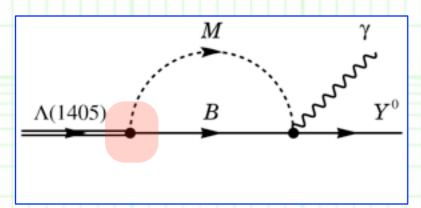
--- Structure of $\Lambda(1405)$ has been discussed in these models, but the \overline{KN} compositeness for $\Lambda(1405)$ has not been discussed.

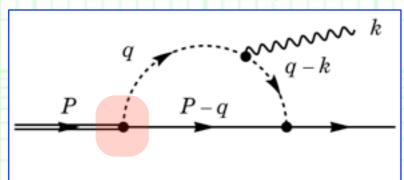
--> Discuss the \overline{KN} compositeness from the $\Lambda(1405)$ radiative decay !

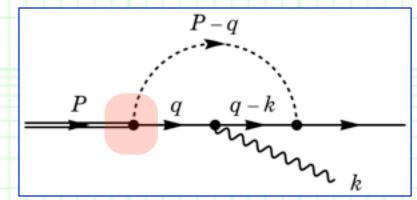
++ Formulation of radiative decay ++

Radiative decay width can be evaluated from following diagrams:

Geng, Oset and Döring, Eur. Phys. J. <u>A32</u> (2007) 201.





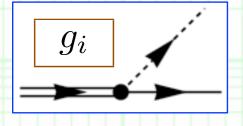


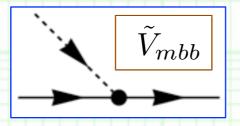
- Each diagram diverges, but <u>sum of the three diagrams converges</u>
 due to the gauge symmetry.
- --- One can prove that the sum converges using the Ward identity.
- The radiative decay width can be expressed as follows:

$$\Gamma_{Y^0\gamma} = \frac{p'_{\rm cm} M_{Y^0}}{\pi M_{\Lambda(1405)}} |W_{Y^0\gamma}|^2$$

with

$$W_{Y^0\gamma} \equiv e \sum_i g_i Q_{M_i} \tilde{V}_{iY^0} A_{iY^0}$$



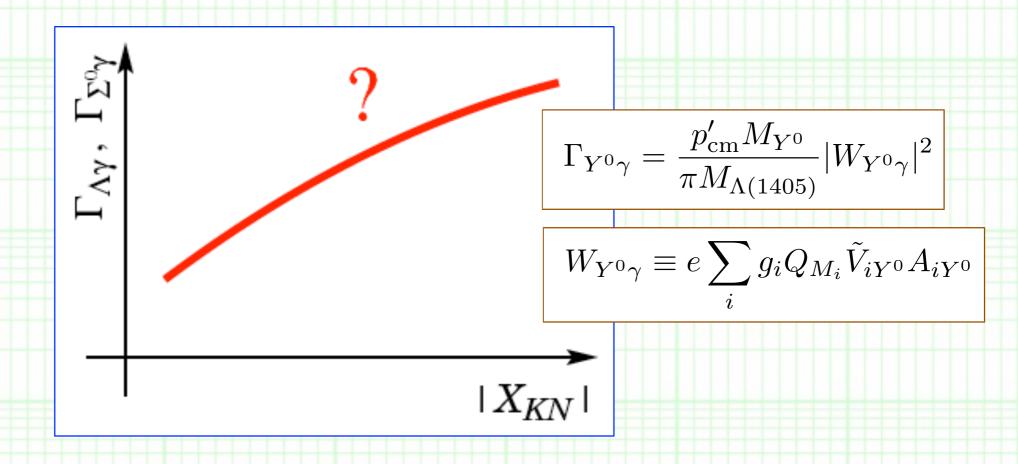


--- Sum of loop integrals A_{iY^0} and meson charge Q_{Mi} .
--- \widetilde{V} : Fixed by flavor SU(3) symmetry.

Model parameter.

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the \overline{KN} compositeness $|X_{KN}|$.
- --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling strength (model parameter) and the $\Lambda(1405)$ pole position are given.



++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the KN compositeness $|X_{KN}|$.
- --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling constant (model parameter) and the $\Lambda(1405)$ pole position are given.
 - \neg $\Lambda(1405)$ pole position from PDG values: $W_{\text{pole}} = M_{\Lambda(1405)} - i \Gamma_{\Lambda(1405)} / 2$ with $M_{\Lambda(1405)} = 1405$ MeV, $\Gamma_{\Lambda(1405)} = 50$ MeV.
 - Assume isospin symmetry for the coupling constant g_i:

$$g_{\bar{K}N} = g_{K^-p} = g_{\bar{K}^0n}$$
 $g_{\pi\Sigma} = g_{\pi^+\Sigma^-} = g_{\pi^-\Sigma^+} = g_{\pi^0\Sigma^0}$

and neglect KX component: $g_{K^+\Xi^-} = g_{K^0\Xi^0} = 0$

$$g_{K^+\Xi^-} = g_{K^0\Xi^0} = 0$$

 \Box The coupling constant g_{KN} as a function of X_{KN} is determined from the compositeness relation:

$$|X_{\bar{K}N}| = |g_{\bar{K}N}|^2 \left| \frac{dG_{K^-p}}{d\sqrt{s}} + \frac{dG_{\bar{K}^0n}}{d\sqrt{s}} \right|_{\sqrt{s} = W_{\text{pole}}}$$

++ Our strategy ++

- We evaluate the $\Lambda(1405)$ radiative decay width $\Gamma_{\Lambda\gamma}$ and $\Gamma_{\Sigma^0\gamma}$ as a function of the absolute value of the \overline{KN} compositeness $|X_{KN}|$.
- --- We can evaluate the $\Lambda(1405)$ radiative decay width when the $\Lambda(1405)$ --meson-baryon coupling strength (model parameter) and the $\Lambda(1405)$ pole position are given.
 - □ Coupling strength $g_{\pi\Sigma}$ from $\Lambda(1405)$ --> $\pi\Sigma$ decay width:

$$\Gamma_{\Lambda(1405)} = 3 \times \frac{p_{\rm cm} M_{\Sigma}}{2\pi M_{\Lambda(1405)}} |g_{\pi\Sigma}|^2 = 50 \text{ MeV}$$
 -> $|g_{\pi\Sigma}| = 0.91$.

- Interference between \overline{KN} and $\pi\Sigma$ components (= relative phase between g_{KN} and $g_{\pi\Sigma}$) are not known.
- --> We show allowed region of the decay width from maximally constructive / destructive interferences:

$$W_{Y^{0}\gamma}^{\pm} = e\left(|g_{\bar{K}N}| \times \left|\tilde{V}_{K^{-}pY^{0}}A_{K^{-}pY^{0}}\right| \pm |g_{\pi\Sigma}| \times \left|\tilde{V}_{\pi^{+}\Sigma^{-}Y^{0}}A_{\pi^{+}\Sigma^{-}Y^{0}} - \tilde{V}_{\pi^{-}\Sigma^{+}Y^{0}}A_{\pi^{-}\Sigma^{+}Y^{0}}\right|\right)$$

$$\Gamma_{Y^{0}\gamma} = \frac{p'_{\text{cm}}M_{Y^{0}}}{\pi M_{X^{(1405)}}} |W_{Y^{0}\gamma}|^{2}$$

++ $\Lambda(1405)$ radiative decay width ++

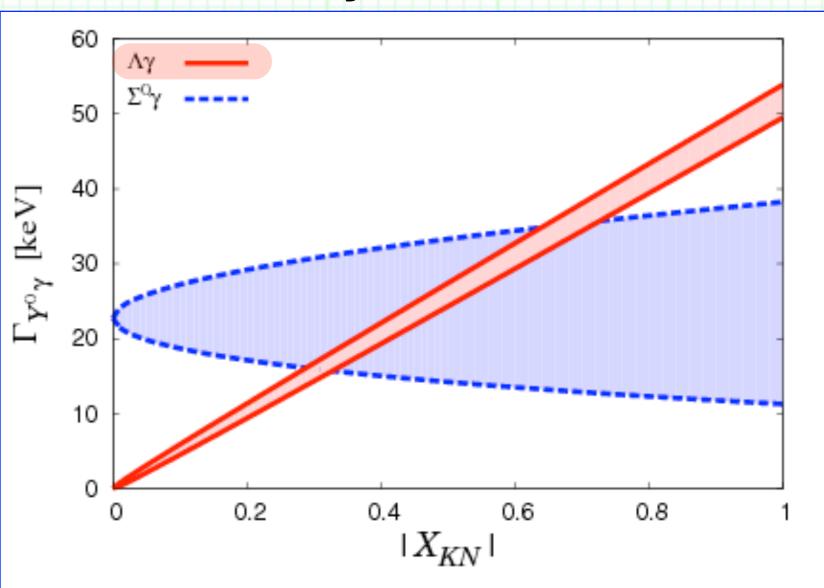
• We obtain allowed region of the $\Lambda(1405)$ radiative decay width as a function of the absolute value of the \overline{KN} compositeness $|X_{KN}|$.



--- We have checked that $\Lambda(1405)$ pole position dependence is small.

++ $\Lambda(1405)$ radiative decay width ++

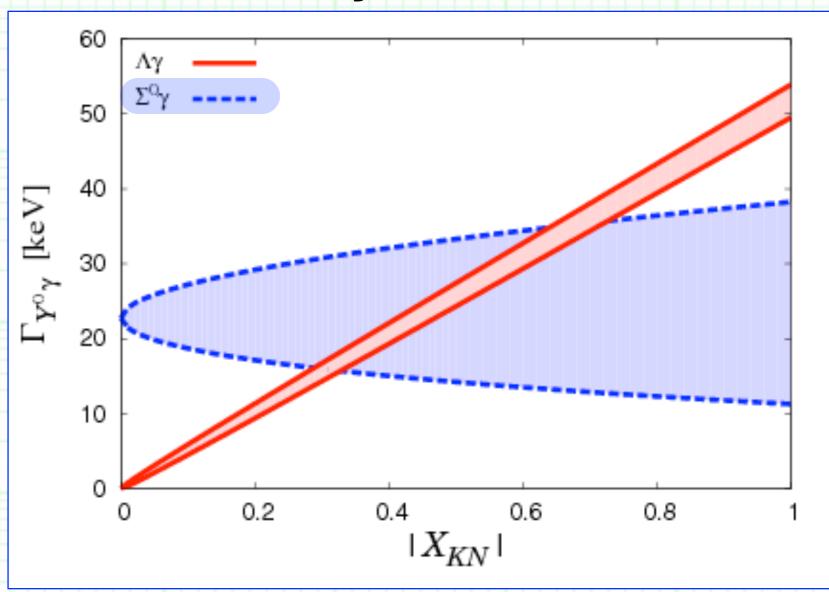
- Λγ decay mode:
 Dominated by the KN component.
- --- Due to the large cancellation between $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$, allowed region for $\Lambda\gamma$ is very small and is almost proportional to $|X_{KN}|$ ($\propto |g_{KN}|^2$).
- --> Large $\Lambda \gamma$ width = large $|X_{KN}|$.



■ The $\Lambda(1405)$ --> $\Lambda\gamma$ radiative decay mode is suited to observe the \overline{KN} component inside $\Lambda(1405)$.

++ $\Lambda(1405)$ radiative decay width ++

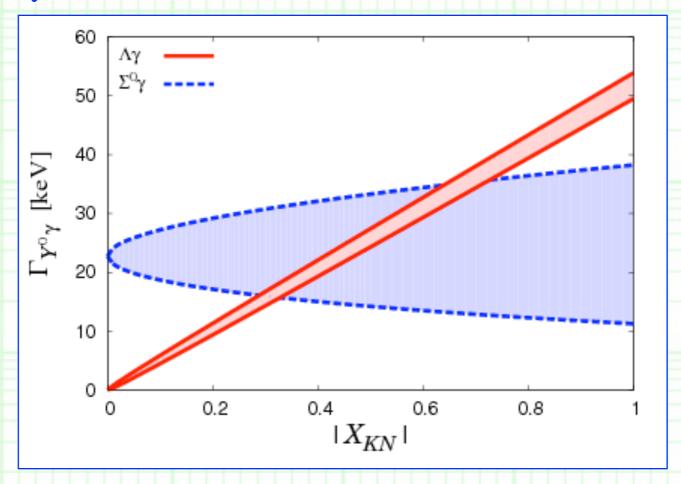
- Σ⁰γ decay mode:
 Dominated by the
 πΣ component.
 - $\Box \Gamma_{\Sigma^0 \gamma} \sim 23 \text{ keV}$ even for $|X_{KN}| = 0$.
 - Very large allowed region for Γ_{Σ0γ}.
 - □ Γ_{Σ0γ} could be very large or very small for $|X_{KN}| \sim 1$.



++ Compared with the "experimental" result ++

■ There is an "experimental" value of the $\Lambda(1405)$ radiative decay:

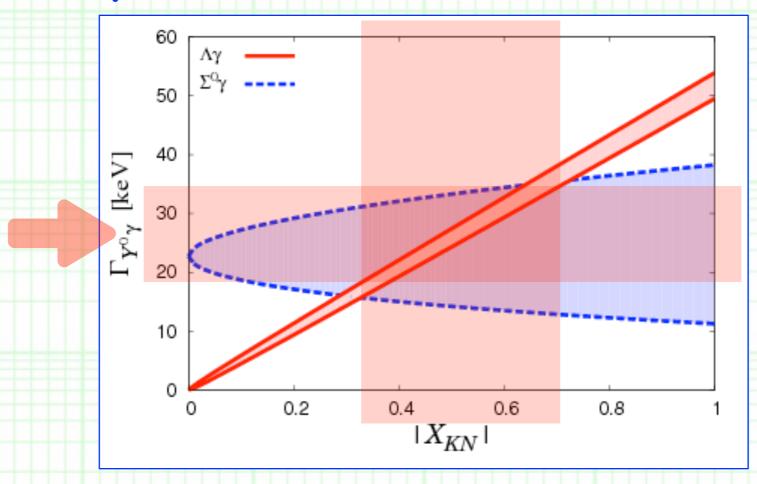
 $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.



++ Compared with the "experimental" result ++

■ There is an "experimental" value of the $\Lambda(1405)$ radiative decay:

 $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

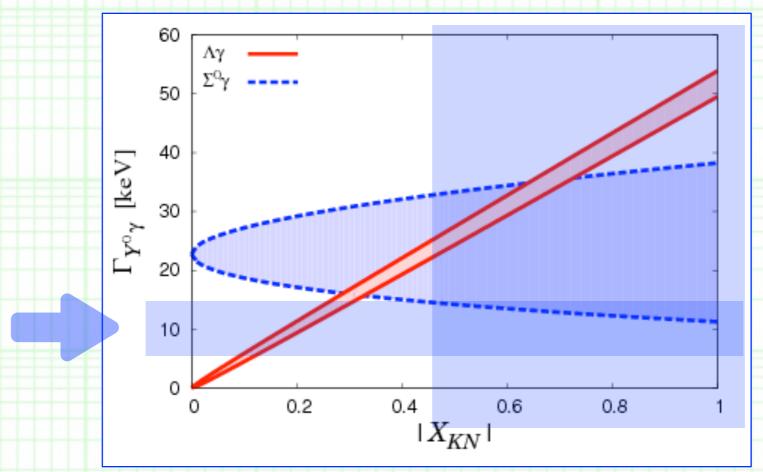


- From $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$: $|X_{KN}| = 0.5 \pm 0.2$.
- --- KN seems to be the largest component inside $\Lambda(1405)$!

++ Compared with the "experimental" result ++

■ There is an "experimental" value of the $\Lambda(1405)$ radiative decay:

 $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.

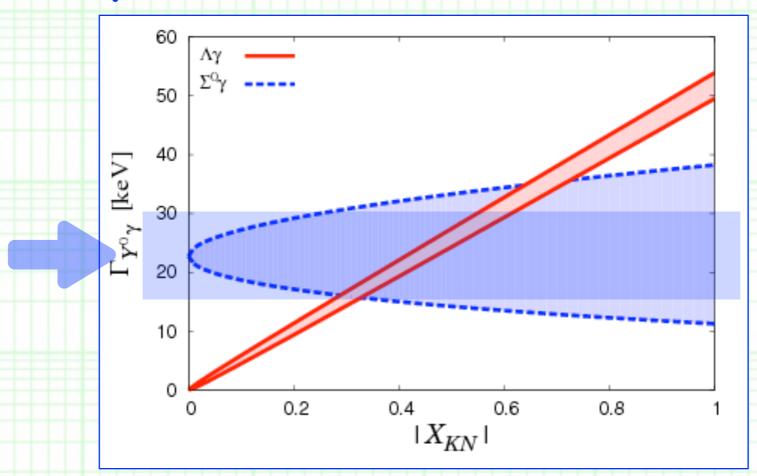


- From $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$: | X_{KN} | > 0.5.
- --- Consistent with the $\Lambda\gamma$ decay mode: large \overline{KN} component !

++ Compared with the "experimental" result ++

■ There is an "experimental" value of the $\Lambda(1405)$ radiative decay:

 $\Gamma(\Lambda(1405) --> \Lambda \gamma) = 27 \pm 8 \text{ keV}$, PDG; Burkhardt and Lowe, *Phys. Rev.* C44 (1991) 607. $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 10 \pm 4 \text{ keV}$ or $23 \pm 7 \text{ keV}$.



■ From $\Gamma(\Lambda(1405) --> \Sigma^0 \gamma) = 23 \pm 7 \text{ keV}$: | X_{KN} | can be arbitrary.

++ Summary of radiative decay ++

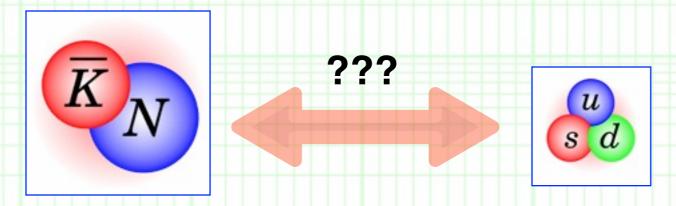
- We have investigated the $\Lambda(1405)$ radiative decay from the viewpoint of compositeness = amount of two-body state inside system.
- We have established a relation between the absolute value of the \overline{KN} compositeness $|X_{KN}|$ and the $\Lambda(1405)$ radiative decay width.
 - □ For the $\Lambda\gamma$ decay mode, due to the large cancellation between $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$, allowed region for the $\Lambda\gamma$ decay width is very small and is almost proportional to $|X_{KN}|$ ($\propto |g_{KN}|^2$).
 - --> Large $\Lambda \gamma$ width directly indicates large compositeness | X_{KN} |.
 - \Box For the $\Sigma^0\gamma$ decay mode, $\pi\Sigma$ component is dominant.
 - --> We could say $|X_{KN}| \sim 1$ if $\Gamma_{\Sigma^0\gamma}$ could be very large or very small.
- By using the "experimental" value for the $\Lambda(1405)$ decay width, we have estimated the \overline{KN} compositeness as $|X_{KN}| > 0.5$.
- --- For more concrete conclusion, <u>precise experiments are needed</u>!

4. Summary

4. Summary

++ Summary ++

• $\Lambda(1405)$ is an interesting hadron, because it may be a *KN* molecular state as an exotic hadron.



- To determine its internal structure, we have to pin down quantities which can be evidence of the exotic structure.
 - Scaling of production cross section in hard exclusive process.
 - Compositeness as the amount of the two-body component.
 - (The spatial size of the hadron.)
 - (The hadron yields in heavy-ion collisions.)
- In order to go further for the determination of the structure, we need both experimental efforts and theoretical ideas.

Thank you very much for your kind attention!

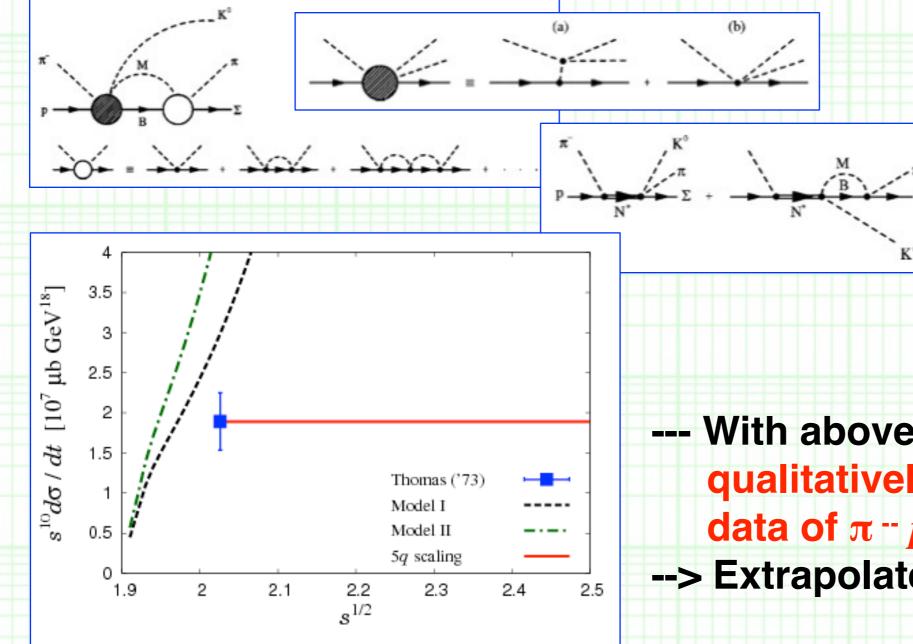
Appendix

A. Appendix

++ $\Lambda(1405)$ production: Theoretical study ++

■ Theoretical calculation of the $\pi^- p --> K^0 \Lambda(1405)$ reaction in the chiral unitary model.

Hyodo et al., Phys. Rev. C68 (2003) 065203.



- --- With above amplitudes, one can qualitatively reproduce the Exp. data of π --- p ---> K^0 $\Lambda(1405)$.
- --> Extrapolate to higher energies.

A. Appendix

++ Radiative decay in chiral unitary model ++

- Taken from the coupling strength g_i from chiral unitary model, one can evaluate radiative decay width in chiral unitary model.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole

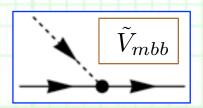
are separated by a comma.

		$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole	
Decay channel $U\chi P'$	W_{pole}	1391 - 66i MeV	1426 - 17i MeV	9]
$\gamma\Lambda$ 16.1, 6	$X_{\bar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i	
$\gamma \Sigma^0$ 73.5, 3	$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i	
Decay channel MIT bag	$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i	23]
$\gamma\Lambda$ 60, 1	$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i	
$\gamma \Sigma^0$ 18, 2.	Z	0.86 - 0.40i	0.00 + 0.09i	± 7

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

- $\Lambda \gamma$ decay mode: Dominated by the *KN* component.

$$\Box$$
 Larger K-p Λ coupling strength: $\tilde{V}_{K^-p\Lambda} = -rac{D+3F}{2\sqrt{3}f} pprox -rac{0.63}{f}$



Large πΣ cancellation:

$$ilde{V}_{\pi^+\Sigma^-\Lambda} = ilde{V}_{\pi^-\Sigma^+\Lambda} = rac{D}{\sqrt{3}f} pprox rac{0.46}{f}$$
 with $Q_{\pi^+} = -Q_{\pi^-} = 1$

$$Q_{\pi^+} = -Q_{\pi^-} = 1$$

A. Appendix

++ Radiative decay in chiral unitary model ++

- Taken from the coupling strength g_i from chiral unitary model, one can evaluate radiative decay width in chiral unitary model.

Table 3. The radiative decay widths of the $\Lambda(1405)$ predicted by different theoretical models, in units of keV. The values denoted by "U χ PT" are the results obtained in the present study. The widths calculated for the low-energy pole and high-energy pole

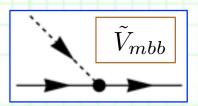
are separated by a comma.

o copulation by a commun			$\Lambda(1405)$, lower pole	$\Lambda(1405)$, higher pole	
Decay channel	$U\chi PT$	W_{pole}	1391 - 66i MeV	1426 - 17i MeV	9]
$\gamma \Lambda$	16.1, 64.8	$X_{ar{K}N}$	-0.21 - 0.13i	0.99 + 0.05i	
$\gamma \Sigma^0$	73.5, 33.5	$X_{\pi\Sigma}$	0.37 + 0.53i	-0.05 - 0.15i	
Decay channel	MIT bag [38]	$X_{\eta\Lambda}$	-0.01 + 0.00i	0.05 + 0.01i	23]
$\gamma \Lambda$	60, 17	$X_{K\Xi}$	0.00 - 0.01i	0.00 + 0.00i	
$\gamma \varSigma^0$	18, 2.7	Z	0.86 - 0.40i	0.00 + 0.09i	± 7

Geng, Oset and Döring, Eur. Phys. J. A32 (2007) 201.

- $\Sigma^0 \gamma$ decay mode: Dominated by the $\pi \Sigma$ component.
 - \square Smaller K- $p\Sigma^0$ coupling strength: $\tilde{V}_{K^-p\Sigma^0} = \frac{D-F}{2f} pprox \frac{0.17}{f}$

$$\tilde{V}_{K^-p\Sigma^0} = \frac{D - F}{2f} \approx \frac{0.17}{f}$$



 \Box Constructive $\pi\Sigma$ contribution:

$$\tilde{V}_{\pi^{+}\Sigma^{-}\Sigma^{0}} = -\tilde{V}_{\pi^{-}\Sigma^{+}\Sigma^{0}} = \frac{F}{f} \approx \frac{0.47}{f}$$

