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Motivation
Strong QCD in the Vacuum

in the vacuum of QCD chiral symmetry is sponaneously broken:

I quarks condense[
Q j

V ,A, H0
QCD

]
= 0 but Qj

A|0〉 6= 0 = |πj〉

→ 〈q̄q〉 6= 0

I appearence of Goldstone bosons

〈0|jµ,j
A |πj (p)〉 = −iδik fπpµe−ipx

f 2
πm2

π = −2m̄ 〈q̄q〉
I no parity doublets in the hadron

spectrum

M(JP ) 6= M(J−P )

light-meson spectrum
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Strong QCD in the Vacuum

in the vacuum of QCD chiral symmetry is sponaneously broken:

I quarks condense[
Q j

V ,A, H0
QCD

]
= 0 but Qj

A|0〉 6= 0 = |πj〉

→ 〈q̄q〉 6= 0

I appearence of Goldstone bosons

〈0|jµA,j |πk (p)〉 = −iδjk fπpµe−ipx

f 2
πm2

π = −2m̄ 〈q̄q〉
I no parity doublets in the hadron

spectrum

M(JP ) 6= M(J−P )

V-A data
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Motivation
Hot and Dense Hadronic Matter
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Photons and Dileptons
penetrating probes of hot and dense matter
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Low-mass Dileptons
theory

dilepton rate : (local thermal equilibrium)

dNll

d4xd4q
= − α

π3M2

1
3

gµν︸ ︷︷ ︸
Lµν

ImΠµνem (M, q;µ, T ); M2 = ω2 − ~q2

electromagnetic correlator:

ImΠµνem (M, q;µ, T ) = −i
∫

d4x ei(ωt−~x·~q)Θ(t)
〈[

jµem(x), jνem(0)
]〉

electromagnetic current: (VDM)

jµem(M ≤ 1GeV) =
m2
ρ

gρ
ρµ +

m2
ω

gω
ωµ +

m2
φ

gφ
φµ

from quark counting:

ImΠµνem ∼
[

ImDµνρ +
1
9

ImDµνω +
2
9

ImDµνφ

]
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ρ-Meson
medium modification

L/T decomposition:

DµνV =
(

M2 −m2
V − ΣL

V (ω, q)
)−1

PµνL +
(

M2 −m2
V − ΣT

V (ω, q)
)−1

PµνT

ρ-meson selfenergy:
ΣL/T
ρ = ΣL/T

ρππ + Σ
L/T
ρM + Σ

L/T
ρB

ρ-spectral functions: (low temperature)
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ρ-Meson
photo-absorption as a test

photo-absorption cross section:

σγ
A

= −4πα
ω

m4
ρ

g2
ρ

ImDT
ρ (ω, q = ω)

nucleon nucleus
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Spectral Functions
under HIC conditions

isentropic fireball expansion

ρ-meson ω and φ-meson

SPS√
sNN=17 GeV

RHIC√
sNN=200 GeV
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Dilepton Rates
SPS and RHIC conditions

SPS RHIC
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Dilepton Data
CERES
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Dilepton Data
NA60
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Dilepton Data
NA60
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Dilepton Data
STAR

 

Dielectron Production in Au+Au-
Collisions at √sNN = 39 & 62.4 GeV

Patrick Huck for the STAR Collaboration
Central China Normal University and Lawrence Berkeley National Laboratory

Summary & Conclusions
• Dielectron invariant mass spectra from Au+Au collisions measured in STAR 

at √sNN = 19.6, 39, 62.4 & 200 GeV and compared to cocktail calculations.
• No significant energy dependence observed for LMR enhancement factor.
• LMR excess yield can be described by in-medium modifications to the ! 

spectral function across a wide range of energies.

Outlook: Charm continuum contribution and its possible in-medium modifica-
tion need better understanding in Au+Au " STAR HFT & MTD upgrades. 

Abstract:
Due to their negligible strong interaction with the dense medium created at RHIC, leptons can escape the interaction region undistorted and thus, carry direct information about the space-time evolution of the 
fireball created in relativistic heavy-ion collisions. In the special case of dileptons, their invariant mass (Mee) serves as an additional observable: For the RHIC BES energies, later dielectron creation times are 
accessible in the Low-Mass-Region (LMR, Mee < 1.1 GeV/c2) where the in-medium vector meson properties and possibly its connection to chiral symmetry restauration can be measured. Earlier creation 
times, on the other hand, can be studied in the Intermediate-Mass-Region (IMR, 1.1 < Mee < 3 GeV/c2) in which the continuum yield is expected to serve as a direct measure of the effective QGP temperature. 
In this regard, the dependence of these observables on the collision energy is of special interest. These aspects, in particular, make dielectrons favorable as a clean penetration probe for the bulk.

STAR Detector & Datasets
Excellent electron identification 
feasible in STAR with large ac-
ceptance via

• Time-Of-Flight Detector
• Time Projection Chamber

High-Statistics Runs of 2010:

energy analyzed MB events
39 GeV 99.4 M

62.4 GeV 54.6 M

nσel ∝ ln
�
dE/dx|meas

�
dE/dx|electron

�
Electron Identification
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1) Like-Sign Same Event Method
All like-sign pairs of one event are combined 
and the two charge combinations averaged. 
This method reproduces the background from 
all correlated sources. The acceptance differ-
ence of like-sign to unlike-sign pairs is corrected 
using the Mixed Event Technique.

2) Unlike-Sign Mixed Event Method
All charges from two different events within the 
same event class (event vertex, reference mul-
tiplicity & event plane) are combined. This 
method describes the background caused by 
the combination of uncorrelated pairs.

The STAR Collaboration: 
http://drupal.star.bnl.gov/STAR/presentations

Cocktail Simulation
‣ Unknown pT distributions are taken from AMPT model calcula-

tions. The according dN/dy is extrapolated from measurements 
at 200 GeV based on the energy dependence given by AMPT.

‣ Contributions due to correlated pairs from semi-leptonic decays 
of charmed mesons are simulated using PYTHIA and scaled to 
Au+Au by the number of binary collisions.

‣ Corresponding charm cross sections are not measured at 
these energies. FONLL predictions are used as lower and !2 
fits to the IMR data as upper limits of the charm continuum con-
tributions, respectively.

√sNN 
(GeV)

Vector Meson Yields Vector Meson Yields Vector Meson Yields Vector Meson Yields (30% uncertainty assigned)(30% uncertainty assigned) σcc̄
pp (mb)

Ncoll√sNN 
(GeV) !0 ! " ! # $ J/%

σpp (mb)

± sys. Ncoll
bin

39 57 9.37 4.42 1.39 4.8 × 10-4 0.19 ± 0.11 243

62.4 72.9 11.4 5.38 1.79 1.2 × 10-3 0.40 ± 0.25 253
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RESULTS: Energy-Dependent Measurements of Dielectron Production
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Dielectron production for invariant masses Mee < 3.5 GeV/c2 has 
systematically been measured in STAR from !sNN = 19.6 GeV up to 
top RHIC energy. A visible excess over a cocktail of hadronic 
sources (excl. "#e+e-) is observed in the LMR for all energies.
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 0  0.2  0.4  0.6  0.8  1

200 GeVIn-medium !
Systematic comparisons of 
LMR dielectron production to 
in-medium " calculations for 
three different energies. The 
additional yield caused by in-
medium radiation is added on 
top of the yield from hadronic 
sources. Within systematic 
uncertaint ies, in-medium 
modifications to the " spectral 
function are able to describe 
the LMR excess yield over a 
wide energy range.

Rapp & Wambach, Adv. Nucl.Phys. 25, 1 (2000) Phys. Rept. 363, 85 (2002)! ! displayed energies through priv. comm.

Systematic measurement of the LMR enhance-
ment factor and comparison to published data.
• Magnitude of the enhancement in agreement 

with the CERES result within uncertainties.
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Spectral Functions
from the Functional Renormalization Group

I as chiral symmetry gets restored chiral partners become degenerate

→ identical spectral functions of parity partners

Weinberg sum rule(s)∫ ∞
0

dω2

ω2 − ~q2

(
ρL

V (ω, q)− (ρL
A(ω, q)

)
=
∫ ∞

0

dω2

ω2 − ~q2
ρπ(ω, q) ∝ ”f ∗2

π ”

I in the presence of phase transitions a method beyond the loop expansion
is required!

I the FRG provides such a method

K. Kamikado, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1302.6199 [hep-ph]

R.-A. Tripolt, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1311.0630 [hep-ph],

PRD 89, 034010 (2014)
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Functional Renormalization Group
a primer

partition function: (scalar field φ(x))

Z [j ] = eW [j ] =
∫

[Dφ] e−S[φ]+
∫

d4x φ(x)j(x)

generating functional:

δW [j ]
δj(x)

∣∣∣∣
j=0

=
1

Z [0]

∫
[Dφ]φe−S[φ] = 〈φ(x)〉 ≡ ϕ(x)

two-point correlation function: (Euclidean)

δ2W [j ]
δj(x)δj(y )

∣∣∣∣
j=0

= 〈φ(x)φ(y )〉 − 〈φ(x)〉 〈φ(y )〉 ≡ G(x , y )

effective action: ((Legendre transform of W)

Γ[ϕ] = −W [j ] +
∫

d4x ϕ(x)j(x)

stationarity condition: and thermodynamic potential:
δΓ[ϕ]
δϕ

∣∣∣∣
ϕ=ϕ0

= 0; → Ω(T ) =
T
V
Γ[ϕ0]
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Functional Renormalization Group
Wilsonian coarse graining

at given resolution scale k split φ into low- and high-frequency modes:

φ(x) = φq≤k (x) + φq>k (x)

→ Z [j ] =
∫

[Dφ]q≤k

∫
[Dφ]q>k e−S[φ]+

∫
d4x φj︸ ︷︷ ︸

=Zk [j ]

; lim
k→0

Zk [j ] = Z [j ]

regulator Rk (q):

lim
k→0

Rk (q) = 0

lim
k→Λ

Rk (q) = ∞

Zk [j ] =
∫

[Dφ] e−S[φ]−∆Sk [φ]+
∫

d4x φj

∆Sk [φ] =
1
2

∫
d4q

(2π)4
φ(−q)Rk (q)φ(q)︸ ︷︷ ︸

acts like a mass term mkeffective action:

→ Γk [ϕ] = − ln Zk [j ] +
∫

d4x ϕ(x)j(x)−∆Sk [ϕ]

Γk interpolates between k = Λ (no fluct.) and k = 0 (full quantum action)

lim
k→Λ

Γk [ϕ] = S[ϕ]; lim
k→0

Γk [ϕ] = Γ[ϕ]
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Functional Renormalization Group
flow equation C. Wetterich (1993)

flow equation for the effective action:

∂kΓk [ϕ] =
1
2

Tr
(
∂k Rk

[
Γ(2)

k + Rk

]−1
)

Γ(2)
k (q) =

δ2Γk [ϕ]
δϕ(−q)δϕ(q)

[C. Wetterich, Phys. Lett. B301 (1993) 90]

The average action Γk corresponds to an integration over all modes of the quantum fields with
Euclidean momenta larger than the infrared cutoff scale, i.e., q2 > k2. The modified Legendre
transform guarantees that the only difference between Γk and Γ is the effective IR cutoff ∆kS
and thus only quantum fluctuations with momenta larger than k are included.

Figure 4.33: The effective average action Γk as an interpolation between the bare action in the
UV and the full effective action Γ in the IR.

In the limit k → 0, the infrared cutoff is removed and the effective average action becomes
the full quantum effective action Γ containing all quantum fluctuations. Thus, for any finite
infrared cutoff k the integration of quantum fluctuations is only partially done. The influence of
modes with momenta q2 < k2 is not considered. This scenario is visualized in Fig. 4.33 where
the k-dependent effective average action Γk as an interpolation between the bare action in the
ultraviolet and the full effective action in the infrared is shown.

In the limit k → ∞ the effective average action matches the bare or classical action. In a
theory with a physical UV cutoff Λ, we therefore associate Γk=Λ with the bare action because no
fluctuations are effectively taken into account. As the scale k is lowered, more and more quantum
fluctuations are taken into account. As a consequence, Γk can be viewed as a microscope with a
varying resolution whose length scale is proportional to 1/k. It averages the pertinent fields over
a d-dimensional volume with size 1/kd and permits to explore the system on larger and larger
length scales. In this sense, it is closely related to an effective action for averages of fields, hence
its denotation as effective average action becomes manifest. Thus, for large scale k one has a
very precise spatial resolution, but one also investigates effectively only a small volume 1/kd.
For lower k the resolution is smeared out and the detailed information of the short distance
physics is lost. However, since the observable volume is increased, long distance effects such as
collective phenomena which play an important role in statistical physics become more and more
visible.

The ’decimation’ idea, presented above, is in close analogy to a repeated application of the
so-called block-spin transformation on a lattice invented by Kadanoff et al. [649]. This trans-
formation is based on integrating out the fluctuations with short wavelengths and a subsequent
rescaling of the parameters which govern the remaining long-range fluctuations such as the mass,
coupling constant etc. On the sites of a coarse lattice more and more spin-blocks are averaged
over. Hence, in the language of statistical physics, the effective average action can also be
interpreted as a coarse grained free energy with a coarse graining scale k.

189
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O(4) Model
flow equation

effective action: (’Local Potential Approximation’)

ϕ = (ϕ1, ... ,ϕ4) = (~π,σ)

Γk [ϕ] =
∫

d4x
{

1
2

(∂µϕ)2 + Uk (ϕ2)− cσ
}

; ϕ2 = ϕiϕ
i = σ2 + ~π2

Γ(2)
k ,ij (q) = Γ(2)

k ,π(q)
{
δij −

ϕiϕj

ϕ2

}
+ Γ(2)

k ,σ(q)
ϕiϕj

ϕ2

flow equation for the effective potential:

∂k UK = Iσ + 3Iπ ; Ii =
1
2

Trq

(
∂k Rk (q)

[
Γ(2)

k ,i (q) + Rk (q)
]−1
)

for
Rk (q) = (k2 − q2)Θ(k2 − q2)

one gets

Ii =
k4

3π2

1
2Ei

, with Eπ =
√

k2 + 2U′; Eσ =
√

k2 + 2U′ + 4U′′ϕ2; U′ =
∂U
∂ϕ

∣∣∣∣
ϕ=ϕ0

etc.
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O(4) Model
flow equations for 2-point functions

taking two functional derivatives of the flow equation for Γk yields

approximation:

Γ(3)
ijm →

δ3Γk

δϕmδϕjδϕi
; Γ(4)

ijmn →
δ4Γk

δϕnδϕmδϕjδϕi

ensures that truncation is consistent with effective action

∂kΓ
(2)
k ,π(p = 0) = 2∂k U′k

∂kΓ
(2)
k ,σ(p = 0) = 2∂k U′k + 4∂k U′′ϕ2

and yields Nambu-Golstone boson in the chiral limit
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O(4) Model
analytic continuation

I first solve flow equation for the effective potential, ∂k Uk

I substitute p0 by continuous real frequency ω

Γ(2),R
k ,j (ω) = lim

ε→0
Γ(2),R

k ,j (p0 = −i(ω + iε),~p = 0); for j = π,σ

I then solve flow equations Re ∂kΓ
(2),R
k , Im ∂kΓ

(2),R
k at global minimum of Uk→0

I finally, spectral functions are given by discontinuity of the propagators, i.e.

ρj (ω) = − 1
π

Im Γ(2),R
j (ω)(

Re Γ(2),R
j (ω)

)2
+
(

Im Γ(2),R
j (ω)

)2 ; Γ(2),R
j (ω) = lim

k→0
Γ(2),R

k ,j (ω)
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Results for O(4) Model in vacuum
Re Γ(2),R(ω) and Im Γ(2),R(ω)

pion:
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[K. Kamikado, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1302.6199 [hep-ph]]
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Results for O(4) Model in vacuum
spectral functions

sigma and pion spectral functions
physical pion mass
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[K. Kamikado, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1302.6199 [hep-ph]]
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Spectral Functions in a Thermal Medium
Quark-Meson Model

effective action:

Γk [ψ̄,ψ,ϕ] =
∫

d4x
{
ψ̄
(
∂/ + h(σ + i~τ · ~πγ5)− µγ0

)
ψ + 1

2 (∂µϕ)2 + Uk (ϕ2)− cσ
}

I effective low-energy model for QCD with two flavors

I describes spontaneous and explicit chiral symmetry breaking

I flow equation for the effective action:
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Spectral Functions in the Medium
phase diagram, masses and order parameter
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[R.-A. Tripolt, N. Strodthoff, L. von Smekal and J. Wambach, arXiv:1311.0630 [hep-ph]]
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Spectral Functions in the Medium
flow of the two-point functions

I quark-meson vertices given by Γ(2,1)
ψ̄ψσ

= h, Γ(2,1)
ψ̄ψ~π

= ihγ5~τ

I meson vertices from scale-dependent effective potential: Γ(0,3)
φiφjφm

, Γ(0,4)
φiφjφmφn
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Results for Quark-Meson Model
spectral functions at µ = 0
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Results for Quark-Meson Model
spectral functions at µ = 0
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Temperature Evolution
animation
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Results for Quark-Meson Model
spectral functions at finite µ
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Summary and Outlook

I Part 1: in-medium vector mesons
I hadronic (phen.) description of vector mesons in a hot and dense medium
I application to low-mass dilepton spectra in HIC’s
I good account of the measurements (vector mesons acquire a large width)

I Part 2: spectral functions from the FRG
I presented a tractable method to obtain hadronic spectral functions

at finite T and µ from the FRG
I results reveal complicated structure for in-medium spectral functions
I inclusion of finite external spatial momenta will allow for

calculation of transport coefficients like shear viscosity
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