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QQ(Q=c,b)で作れない量子数をもつ : JPC= 0+ ‒ ,1‒ + , 2+ ‒ 
荷電状態のQQ ライクな粒子 
QQでは説明できない崩壊特性 
X(3872), Y(4260), Zc±(3900), Zb±(10610), Zb±(10650),
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!

Υ(5S) ➜ Zb±π∓ ➜ Υ(nS)π+π- 
Υ(5S) ➜ Zb±π∓ ➜ hb(mP)π+π-

where Mmissð!þ!#Þ is the missing mass recoiling

against the !þ!# system calculated as Mmissð!þ!#Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEc:m: # E&

!þ!#Þ2 # p&2
!þ!#

q
, Ec:m: is the center-of-mass

(c.m.) energy, and E&
!þ!# and p&

!þ!# are the energy

and momentum of the !þ!# system measured in the
c.m. frame. Candidate !ð5SÞ ! !ðnSÞ!þ!# events
are selected by requiring jMmissð!þ!#Þ #m!ðnSÞj<
0:05 GeV=c2, where m!ðnSÞ is the mass of an !ðnSÞ state
[7]. Sideband regions are defined as 0:05 GeV=c2 <
jMmissð!þ!#Þ #m!ðnSÞj< 0:10 GeV=c2. To remove
background due to photon conversions in the innermost
parts of the Belle detector we require M2ð!þ!#Þ>
0:20; 0:14; 0:10 GeV=c2 for a final state with an !ð1SÞ,
!ð2SÞ, !ð3SÞ, respectively.

Amplitude analyses of the three-body !ð5SÞ !
!ðnSÞ!þ!# decays reported here are performed by means
of unbinned maximum likelihood fits to two-dimensional
M2½!ðnSÞ!þ( vs M2½!ðnSÞ!#( Dalitz distributions.
The fractions of signal events in the signal region are
determined from fits to the corresponding Mmissð!þ!#Þ
spectrum and are found to be 0:937) 0:015ðstatÞ, 0:940)
0:007ðstatÞ, 0:918) 0:010ðstatÞ for final states with!ð1SÞ,
!ð2SÞ,!ð3SÞ, respectively. The variation of reconstruction
efficiency across the Dalitz plot is determined from a
GEANT-based MC simulation [8] and is found to be small
except for the higherM½!ðnSÞ!)( region. The distribution
of background events is determined using events from the
!ðnSÞ sidebands and found to be uniform (after efficiency
correction) across the Dalitz plot.

Dalitz distributions of events in the!ð2SÞ sidebands and
signal regions are shown in Figs. 1(a) and 1(b), respec-
tively, where M½!ðnSÞ!(max is the maximum invariant
mass of the two !ðnSÞ! combinations. This is used to
combine !ðnSÞ!þ and !ðnSÞ!# events for visualization
only. Two horizontal bands are evident in the !ð2SÞ!
system near 112:6 GeV2=c4 and 113:3 GeV2=c4, where
the distortion from straight lines is due to interference with
other intermediate states, as demonstrated below. One-
dimensional invariant mass projections for events in the

!ðnSÞ signal regions are shown in Fig. 2, where two peaks
are observed in the !ðnSÞ! system near 10:61 GeV=c2

and 10:65 GeV=c2. In the following we refer to these
structures as Zbð10 610Þ and Zbð10 650Þ, respectively.
We parametrize the !ð5SÞ ! !ðnSÞ!þ!# three-body

decay amplitude by

M ¼ AZ1
þ AZ2

þ Af0 þ Af2 þ Anr; (1)

where AZ1
and AZ2

are amplitudes to account for contribu-
tions from the Zbð10 610Þ and Zbð10 650Þ, respectively.
Here we assume that the dominant contributions come
from amplitudes that preserve the orientation of the spin
of the heavy quarkonium state and, thus, both pions in the
cascade decay !ð5SÞ ! Zb! ! !ðnSÞ!þ!# are emitted
in an S wave with respect to the heavy quarkonium system.
As demonstrated in Ref. [9], angular analyses support this
assumption. Consequently, we parametrize the observed
Zbð10 610Þ and Zbð10 650Þ peaks with an S-wave Breit-

Wigner function BWðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p

M2#s#iM"
, where we do

not consider possible s dependence of the resonance width.
To account for the possibility of !ð5SÞ decay to both
Zþ
b !

# and Z#
b !

þ, the amplitudes AZ1
and AZ2

are symme-
trized with respect to !þ and !# transposition. Using
isospin symmetry, the resulting amplitude is written as
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FIG. 1. Dalitz plots for !ð2SÞ!þ!# events in the (a) !ð2SÞ
sidebands; (b) !ð2SÞ signal region. Events to the left of the
vertical line are excluded.
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FIG. 2. Comparison of fit results (open histogram) with ex-
perimental data (points with error bars) for events in the !ð1SÞ
(a),(b), !ð2SÞ (c),(d), and !ð3SÞ (e),(f) signal regions. The
hatched histogram shows the background component.
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suppressed by a requirement on the ratio of the second to
zeroth Fox-Wolfram moments R2 < 0:3 [13]. The fit func-
tion is a sum of peaking components due to dipion
transitions and combinatorial background. The positions
of all peaking components are fixed to the values measured
in Ref. [3]. In the case of the hbð1PÞ the peaking compo-
nents include signals from !ð5SÞ ! hbð1PÞ and !ð5SÞ !
!ð2SÞ transitions, and a reflection from the !ð3SÞ !
!ð1SÞ transition, where the !ð3SÞ is produced inclusively
or via initial state radiation. Since the !ð3SÞ ! !ð1SÞ
reflection is not well constrained by the fits, we determine
its normalization relative to the !ð5SÞ ! !ð2SÞ signal
from the exclusive !þ!$"þ"$ data for every Mmissð"Þ
bin. In case of the hbð2PÞ we use a smaller Mmissð"þ"$Þ
range than in Ref. [3], Mmissð"þ"$Þ< 10:34 GeV=c2,
to exclude the region of the K0

S ! "þ"$ reflection.
The peaking components include the !ð5SÞ ! hbð2PÞ
signal and a !ð2SÞ ! !ð1SÞ reflection. To constrain the
normalization of the !ð2SÞ ! !ð1SÞ reflection we use
exclusive !þ!$"þ"$ data normalized to the total yield
of the reflection in the inclusive data. Systematic uncer-
tainty in the latter number is included in the error
propagation. The combinatorial background is parame-
trized by a Chebyshev polynomial. We use orders between
6 and 10 for the hbð1PÞ [the order decreases monotonically
with the Mmissð"Þ] and orders between 6 and 8 for the
hbð2PÞ.

The results for the yield of !ð5SÞ ! hbðmPÞ"þ"$

(m ¼ 1, 2) decays as a function of the Mmissð"Þ are shown
in Fig. 3. The distribution for the hbð1PÞ exhibits a clear
two-peak structure without a significant nonresonant con-
tribution. The distribution for the hbð2PÞ is consistent with
the above picture, though the available phase space is
smaller and uncertainties are larger. We associate the two
peaks with the production of the Zbð10 610Þ and
Zbð10 650Þ. To fit the Mmissð"Þ distributions we use the
expression

jBW1ðs;M1;"1Þ þ aei#BW1ðs;M2;"2Þ þ beic j2 qpffiffiffi
s

p :

(4)

Here
ffiffiffi
s

p & Mmissð"Þ; the variablesMk, "k (k ¼ 1, 2), a,#,
b, and c are free parameters; qpffiffi

s
p is a phase-space factor,

where p (q) is the momentum of the pion originating from
the !ð5SÞ (Zb) decay measured in the rest frame of the
corresponding mother particle. The P-wave Breit-Wigner

amplitude is expressed as BW1ðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p
Fðq=q0Þ

M2$s$iM"
.

Here F is the P-wave Blatt-Weisskopf form factor F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðq0RÞ2
1þðqRÞ2

r
[14], q0 is a daughter momentum calculated with

pole mass of its mother, R ¼ 1:6 GeV$1. The function
[Eq. (4)] is convolved with the detector resolution function
($ ¼ 5:2 MeV=c2), integrated over the 10 MeV=c2 histo-
gram bin and corrected for the reconstruction efficiency.
The fit results are shown as solid histograms in Fig. 3
and are summarized in Table I. We find that the nonreso-
nant contribution is consistent with zero [significance is
0:3$ both for the hbð1PÞ and hbð2PÞ] in accord with
the expectation that it is suppressed due to heavy-quark
spin flip. In case of the hbð2PÞ we improve the stability
of the fit by fixing the nonresonant amplitude to zero.
The C.L. of the fit is 81% (61%) for the hbð1PÞ [hbð2PÞ].
The default fit hypothesis is favored over the phase-space
fit hypothesis at the 18$ [6:7$] level for the hbð1PÞ
[hbð2PÞ].
To estimate the systematic uncertainty we vary the order

of the Chebyshev polynomial in the fits to the
Mmissð"þ"$Þ spectra; to study the effect of finite
Mmissð"Þ binning we shift the binning by half bin size; to
study the model uncertainty in the fits to the Mmissð"Þ
distributions we remove [add] the nonresonant contribu-
tion in the hbð1PÞ [hbð2PÞ] case; we increase the width of
the resolution function by 10% to account for possible
difference between data and MC simulation. The maxi-
mum change of parameters for each source is used as
an estimate of its associated systematic error. We estimate
an additional 1 MeV=c2 uncertainty in mass measure-
ments based on the difference between the observed
!ðnSÞ peak positions and their world averages [3]. The
total systematic uncertainty presented in Table I is the sum
in quadrature of contributions from all sources. The sig-
nificance of the Zbð10 610Þ and Zbð10 650Þ including sys-
tematic uncertainties is 16:0$ [5:6$] for the hbð1PÞ
[hbð2PÞ].
In conclusion, we have observed two charged bottomo-

niumlike resonances, the Zbð10 610Þ and Zbð10 650Þ, with
signals in five different decay channels, !ðnSÞ"' (n ¼ 1,
2, 3) and hbðmPÞ"' (m ¼ 1, 2). The parameters of the
resonances are given in Table I. All channels yield consis-
tent results. Weighted averages over all five channels give
M ¼ 10 607:2' 2:0 MeV=c2, " ¼ 18:4' 2:4 MeV for
the Zbð10 610Þ and M ¼ 10 652:2' 1:5 MeV=c2, " ¼
11:5' 2:2 MeV for the Zbð10 650Þ, where statistical
and systematic errors are added in quadrature. The
Zbð10 610Þ production rate is similar to that of the
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FIG. 3. The (a) hbð1PÞ and (b) hbð2PÞ yields as a function of
Mmissð"Þ (points with error bars) and results of the fit (histo-
gram).
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Υ(5S) ➜[Υ(2S) π±]π∓ Υ(5S) ➜[hb(1P)π±]π∓

Belle group,  PRL108, 112001 (2012).

✴ Υ : JPC=1‒ ‒  

✴  hb : JPC=1+ ‒ 

✴n=1,2,3 m=1,2



Zbの質量と崩壊幅

Zb(10610) : Zb 
    M = 10607.4 ± 2.0 MeV   
    Γ = 18.3 ± 2.4 MeV

Zb(10650) : Zb’ 
    M = 10652.2 ± 1.5 MeV  
    Γ = 11.5 ± 2.2 MeV

~BB* ~B*B*

Belle group,  PRL108, 112001 (2012).



Zbの特徴
エキゾチック量子数

エキゾチックな質量

エキゾチックな崩壊

ZbはB*B(*)分子状態 !

IG(JP)=1+(1+) 
Zbは“真性”なエキゾチック粒子

Zbは非常に質量差の小さいツイン共鳴          
(BB*とB*B*閾値のわずか上にある)

Υ(5S)➜Zbπ➜hb(mP)ππがボトムクォークのス
ピン反転が必要にも関わらず、抑制されていない       

A. Bondar, et al, !
PRD84 054010 (2011)

S. Ohkoda, Y. Yamaguchi, S. Yasui, !
K. Sudoh, and A. Hosaka, !
Phys. Rev. D86, 014004 (2012)
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Spin selection rules  
for Zb

S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, !
Phys.Rev. D86, 117502 (2012).
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Zb(’)の分岐比

Belle results in quarkonium Roman Mizuk

Table 1: Branching fractions (B) of Zb(10610) and Zb(10650) assuming that the observed so far channels
saturate their decays.

Channel B of Zb(10610), % B of Zb(10650), %
ϒ(1S)π+ 0.32±0.09 0.24±0.07
ϒ(2S)π+ 4.38±1.21 2.40±0.63
ϒ(3S)π+ 2.15±0.56 1.64±0.40
hb(1P)π+ 2.81±1.10 7.43±2.70
hb(2P)π+ 2.15±0.56 14.8±6.22
B+  B∗0 +  B0B∗+ 86.0±3.6 –
B∗+  B∗0 – 73.4±7.0

3. Evidence for neutral isotriplet member Zb(10610)0

Both Zb(10610) and Zb(10650) are isotriplets with only charged components observed orig-
inally. Belle searched for their neutral components using the ϒ(5S) → ϒ(nS)π0π0 (n = 1,2)
decays [8]. These decays are observed for the first time and the measured branching fractions
B[ϒ(5S) → ϒ(1S)π0π0] = (2.25 ± 0.11 ± 0.22)× 10−3 and B[ϒ(5S) → ϒ(2S)π0π0] = (3.66 ±

0.22±0.48)×10−3, are in agreement with isospin relations.
Belle performed the Dalitz plot analyses of the ϒ(5S) → ϒ(1S,2S)π0π0 transitions using the

same model as for the charged pion channels (see Fig. 4). The Zb(10610)0 signal is found in
the ϒ(2S)π0 channel with the significance of 4.9σ including systematics. The Zb(10610)0 mass
of (10609+8

−6 ± 6)MeV/c2 is consistent with the charged Zb(10610)± mass. The signal of the
Zb(10610)0 in the ϒ(1S)π0 channel and the Zb(10650)0 signal are insignificant. The Belle data do
not contradict the existence of the Zb(10610)0 → ϒ(1S)π0 and the Zb(10650)0, but the available
statistics are insufficient to establish these signals.

4. Interpretations

As discussed at the end of Section 2, the assumption of molecular B(∗)  B∗ structure naturally
explains all observed so far properties of the Zb states. Their dynamical model, however, is an open
question. Proposed interpretations include presence of the compact tetraquark [9], non-resonant
rescattering [10], multiple rescatterings that result in the amplitude pole known as coupled channel
resonance [11] and deutron-like molecule bound by meson exchanges [12]. All these mechanisms
(except for the tetraquark) are intimately related and correspond rather to quantitative than to qual-
itative differences. Further experimental and theoretical studies are needed to clarify the nature of
the Zb states.

As discussed in Ref. [5], based on heavy quark symmetry one can expect more states with
similar nature but with differing quantum numbers. Such states should be accessible in radiative
and hadronic transitions in data samples with high statistics at and above the ϒ(5S), that will be
available at the SuperKEKB.

5

オープンフレーバーチャンネルへの崩壊が占有的 
hbπ抑制されていない ➜ Zbのスピン構造と関係している

Belle Collaboration, 
arXiv:1206.6450
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ヘビークォークスピン対称性

Chapter 5. Spin selection rules for decays and productions of Zb resonances and other
BB̄ molecules 52

Υ(5S) and Υ(nS) are spin triplet states of QQ̄, whereas hb(mP ) are spin singlet states.

At first glance, one may expect that spin flip processes, Zb → hb(mP )π, should be

suppressed compared with non-spin flip processes, Zb → Υ(nS)π, because of the large

mass of b quark. Nevertheless, two kind of decays occur with comparable rate [1, 2] This

puzzle is germane to the spin structure of Zb .[11, 12], which will be discussed in this

chapter.

In this chapter, we derive relative rates of each transition when we consider that B(∗)B̄(∗)

molecular states obey the heavy quark symmetry. The heavy quark symmetry allows

only the processes where heavy quark spin is conserved, leading to selection rules among

certain classes of transitions. To derive them, we consider the spin structure of the

mesons by means of spin re-coupling formula which is equivalent to Fierz rearrangement.

By rearranging the two heavy quarks in B(∗) and B̄(∗) mesons of a molecular state, we

can separate the heavy quark spin and the spin of light degrees of freedom in heavy

quark limit.

This chapter is organized as follows. First we define the conserved quantity in heavy

quark limit, namely heavy quark spin and spin of light degrees of freedom in Section 4.2.

In Section ??, We show the examples of spin selection rules for the bottomonium decays,

and discuss some symmetry breaking case for bottomonium decays. We analyze the spin

structures of Zb resonances, and estimate the decay properties of Zb in Section 4.4. After

that, we also analyze the spin structures of the predicted B(∗)B̄(∗) molecules to estimate

the decay properties of them in Section 4.5.

4.2 Heavy quark spin symmetry

4.2.1 Heavy quark spin symmetry

In the heavy effective theory, the effective Lagrangian for heavy quark field Qv is given

as

LHQET = Q̄vv · iDQv + Q̄v
(iD⊥)2

2mQ
Qv − c(µ)gsQ̄v

σµνGµν

4mQ
Qv + O(1/m2

Q), (4.1)

where Dµ
⊥ = Dµ−vµv ·D,Gµν = [DµDν ]/igs, and σµν = i[γµ, γν ]/2. Here, the covariant

derivative is defined as Dµ = ∂µ + igsAa
µtq with the gluon field Aa

µ, the gauge coupling

gs, and ta = λa/2 with the Gell-Mann matrices λa(a = 1, · · · , 8). c(µ) is the Wilson

ヘビークォーク極限では新たな保存量が定義できる   
̶̶ light spin degree of freedom

Sl = J - SH  
   ~  sq + L 

Total angular momentum 
Heavy quark spin

Light spin
J
SH

Sl

:
:
:

ヘビークォーク極限ではスピン-スピン相互作用が抑制さ
れる   ̶̶ Heavy quark spin symmetry

Chapter 2. Heavy quark symmetry and effective heavy hadron theory 7

To begin with, we consider a heavy quark with the velocity v interacting with the

external fields such as gluon fields. On the on-shell quark, the velocity v is defined by

pQ = mQv, where pQ is a mometum of the heavy quark. Because the mass of a heavy

quark is sufficiently heavy compared with ΛQCD, we can regard an off-shell heavy quark

as an almost on-shell heavy quark and its momentum pQ can be written, introducing a

residual momentum k of the order of ΛQCD, as

pQ = mQv + k (2.1)

The usual dirac propagator of a heavy quark simplifies to

i
p/ + mQ

p2 −m2
Q + iϵ

= i
mQv/ + mQ + k

2mQv · k + k2 + iϵ
→ i

1 + v/

2v · k + iϵ
, (2.2)

in the heavy quark limit. A projection operator which is depend on the velocity,

1 + v/

2
(2.3)

appears in the propagator. In the rest frame of the heavy quark this projection operator

becomes (1+ γ0)/2, which projects onto the particle components of the Dirac spinor. It

is useful to formulate the effective Lagragian with the velocity-dependent fields Qv(x),

Using Qv(x), we can decompose the original heavy quark field into the positive energy

Qv(x) and the negative energy heavy quark fields Qv(x) as

Q(x) = e−imQv·x[Qv(x) + Qv(x)], (2.4)

where

Qv(x) = eimQv·x 1 + v/

2
Q(x), Q(x) = eimQv·x 1− v/

2
Q(x). (2.5)

The exponential prefactor subtracts mQvµ from the heavy quark momentum. At the

leading order, The Qv field only appears in the effective Lagrangian, whereas the Qv

field is suppressed by powers of 1/mQ. Neglecting Qv and substituting Eq .2.4 into the

part of QCD Lagrangian involving the heavy quark field, Q̄(iD/−mQ)Q, we obtain the

effective Lagrangian at lowest order as

L = Q̄v(iv · D)Qv, (2.6)

2. Hadrons with a heavy quark and spin-complex

In this section, we introduce the spin-complex as a convenient tool to
express the brown muck and then a hadron, starting from the HQS in QCD.
We show that a heavy hadron with the total spin J ≥ 1/2 may have two
components with different spin complex of spin j = J ± 1. They can mix for
a finite heavy quark mass, but are decoupled in the heavy quark limit. The
spin-complex basis is then related to the particle basis, from which the wave
functions of the pair states in the HQS doublet are analyzed in terms of the
hadronic degrees of freedom. Explicit examples of these components will be
given in Section 3 for the P̄ (∗)N system.

The HQS also leads to the systematic expansion of the hadron mass in
the inverse powers of the heavy quark mass. This expansion enables us to
define the mass of the brown muck, and hence that of the spin-complex, in
the heavy quark limit. We present the basic formula which will be used in
Section 4 to extract the spectrum of the brown muck from the experimental
data and theoretical predictions with a finite heavy quark mass.

2.1. Heavy quark symmetry in QCD
We consider that the heavy quark mass mQ is much larger than a typical

energy scale of low energy QCD. In this case, an effective field theory with
the 1/mQ expansion is useful to study the hadrons containing a single heavy
quark. To this end, let us start our discussion first with the heavy quark
Lagrangian;

LHQ = Q̄(iD/ − mQ)Q, (1)

where Q is the heavy quark field, the covariant derivative is defined by Dµ =
∂µ + igsAa

µt
a with the gluon field Aa

µ, the gauge coupling gs, and ta = λa/2
with the Gell-Mann matrices λa (a = 1, · · · , 8). The term from light quark
and gluon sectors is not relevant in the current discussion. Denoting the four-
velocity of the heavy quark as v (v2 = 1), we decompose the heavy quark field
into the positive energy component Qv(x) and the negative energy component
Qv(x) as

Q(x) = e−imQv·x [Qv(x) + Qv(x)] , (2)

by the projections

Qv(x) = eimQv·x1 + v/

2
Q(x), Qv(x) = eimQv·x 1 − v/

2
Q(x). (3)

5



スピン選択則
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ヘビーハドロンの波動関数はスピンの自由度を用いて 
SH ⊗ Sl として記述できる

Υ
hb

χbJ

:
:
:

1H ⊗ 0l　
0H ⊗ 1l　
(1H ⊗ 1l)J　

➜

➜

➜

SH ⊗ Slbb(2S+1LJ)

3S1

1P1

3PJ

:
:
:

JPC

1- - 

1+- 

1++ 

ηb : 0H ⊗ 0l　➜1S0: 0-+ 

スピン選択則
Υ ➜ hbππ 
Υ ➜ ηbγ

✗

✗



 

Zbのスピン構造
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Zbをメソン分子状態と仮定する

Zb

Zb’

:

:

SH ⊗ SlComponent
1�
2
(BB̄� �B�B̄)(3S1)

B�B̄�(3S1)

Zbのスピン構造?

➜

➜

❓

Zbの崩壊特性を調べる
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ヘビーメソンペアのスピン構造はスピン組み替え公式を用
いて求められる
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The available data give the branching fractions of decay

Γexp(Υ(5S)→ BB̄) : Γexp(Υ(5S)→ BB̄∗) : Γexp(Υ(5S)→ B∗B̄∗)

1 : 2.5 : 7
, (5.33)

which is not so far from the result in Eq. (5.32).

5.4 The Zb decay property

Now we consider Zb(10610) and Zb(10650). We assume that the main component of

the wave function of Zb(10610) is 1√
2
(BB̄∗ − B∗B̄)(3S1) and that of the Zb(10650) is

B∗B̄∗(3S1). Because these masses are close to BB̄∗ and B∗B̄∗ thresholds respectively,

and the rate of D-wave mixing is not large as the previous study indicates that the

probability of 1√
2
(BB̄∗−B∗B̄)(3D1) is about 9% and that of B∗B̄∗(3D1) is about 6% in

the total wave function of Zb(10610) [7]. Let us now employ the spin re-coupling formula

with 9-j symbols to analyze the spin structure of 1√
2
(BB̄∗−B∗B̄)(3S1) and B∗B̄∗(3S1).

This standard formula is written as

[[l1, s1]j1 , [l2, s2]j2 ]J =
∑

L,S

ĵ1ĵ2L̂Ŝ

⎧
⎪⎪⎨

⎪⎪⎩

l1 s1 j1

l2 s2 j2

L S J

⎫
⎪⎪⎬

⎪⎪⎭
[[l1, l2]L, [s1, s2]S ]J , (5.34)

where [j1, j2]J means that the angular momenta j1 and j2 are coupled to the total angular

momentum J , and Ĵ =
√

2J + 1. By using this, the heavy and light spins of BB̄∗(3S1)

and B∗B̄(3S1) are re-coupled as

|BB̄∗(3S1)⟩ = [[bq̄]0, [b̄q]1]1

=
∑

H,l

0̂1̂Ĥl̂

⎧
⎪⎪⎨

⎪⎪⎩

1/2 1/2 0

1/2 1/2 1

H l 1

⎫
⎪⎪⎬

⎪⎪⎭

[
[bb̄]H , [q̄q]l

]1

=
1
2
[
[bb̄]0, [q̄q]1

]1 − 1
2
[
[bb̄]1, [q̄q]0

]1 +
1√
2

[
[bb̄]1, [q̄q]1

]1

=
1
2
(0−H ⊗ 1−l )− 1

2
(1−H ⊗ 0−l ) +

1√
2
(1−H ⊗ 1−l ) , (5.35)
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|B∗B̄(3S1)⟩ = [[bq̄]1, [b̄q]0]1

= −1
2
(0−H ⊗ 1−l ) +

1
2
(1−H ⊗ 0−l ) +

1√
2
(1−H ⊗ 1−l ) , (5.36)

which give the spin structure of 1√
2
(BB̄∗ −B∗B̄)(3S1). For B∗B̄∗(3S1), we have

|B∗B̄∗(3S1)⟩ =
[
[bq̄]1, [b̄q]1

]1

=
∑

H,l

1̂1̂Ĥl̂

⎧
⎪⎪⎨

⎪⎪⎩

1/2 1/2 1

1/2 1/2 1

H l 1

⎫
⎪⎪⎬

⎪⎪⎭

[
[bb̄]H , [q̄q]l

]1

=
1√
2

[
[bb̄]0, [q̄q]1

]1 +
1√
2

[
[bb̄]1, [q̄q]0

]1

=
1√
2
(0−H ⊗ 1−l ) +

1√
2
(1−H ⊗ 0−l ) . (5.37)

If the structure of Zb’s is dominated by B(∗)B̄∗(3S1), their spin configurations are given

from (5.35)-(5.37) as

|Zb(10610)⟩ =
1√
2
(0−H ⊗ 1−l )− 1√

2
(1−H ⊗ 0−l ) , (5.38)

|Zb(10650)⟩ =
1√
2
(0−H ⊗ 1−l ) +

1√
2
(1−H ⊗ 0−l ) . (5.39)

It is important to note that Zb’s have the same fraction of a heavy quark spin singlet

component and a triplet component. A usual bottomonium cannot have two kinds of

heavy quark spin states. For instance, Υ(nS) is a spin-triplet bottomonium (|Υ(nS)⟩ =

1−H ⊗ 0+
l ) and hb(kP ) is a spin-singlet bottomonium (|hb(kP )⟩ = 0−H ⊗ 1−l ). Naively, it

is expected that Υ → hbππ decay is suppressed because this process needs spin flip of

a heavy quark. However, the experimental data shows that Υ(5S)→ hb(kP )ππ decays

have almost same probabilities as Υ(5S)→ Υ(nS)ππ [1]. This can be explained by the

wave function of (5.38) and (5.39). In fact, if a two pion emission process from Υ(5S)

occurs through Zb, the first term of (5.38) or (5.39) allows the decay into hb(kP )ππ

while the second term into Υ(nS)ππ. These arguments have been already made by Fierz

transformation in [20, 67]. Here we have shown the same results in terms of the spin

re-coupling formula (5.34), which is also applied to other processes in a straightforward

manner.

Next we consider the neutral resonance Z0
b (10610) recently observed in the processes

Υ(5S) → π0π0Υ(1S, 2S) by Belle group [4]. It is possible for Z0
b (10610) to decay into
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2
(0−H ⊗ 1−l ) +

1
2
(1−H ⊗ 0−l ) +

1√
2
(1−H ⊗ 1−l ) , (5.36)

which give the spin structure of 1√
2
(BB̄∗ −B∗B̄)(3S1). For B∗B̄∗(3S1), we have

|B∗B̄∗(3S1)⟩ =
[
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=
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1̂1̂Ĥl̂

⎧
⎪⎪⎨

⎪⎪⎩

1/2 1/2 1

1/2 1/2 1

H l 1

⎫
⎪⎪⎬

⎪⎪⎭
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]1

=
1√
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If the structure of Zb’s is dominated by B(∗)B̄∗(3S1), their spin configurations are given
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|Zb(10610)⟩ =
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(0−H ⊗ 1−l )− 1√

2
(1−H ⊗ 0−l ) , (5.38)

|Zb(10650)⟩ =
1√
2
(0−H ⊗ 1−l ) +

1√
2
(1−H ⊗ 0−l ) . (5.39)

It is important to note that Zb’s have the same fraction of a heavy quark spin singlet

component and a triplet component. A usual bottomonium cannot have two kinds of

heavy quark spin states. For instance, Υ(nS) is a spin-triplet bottomonium (|Υ(nS)⟩ =

1−H ⊗ 0+
l ) and hb(kP ) is a spin-singlet bottomonium (|hb(kP )⟩ = 0−H ⊗ 1−l ). Naively, it

is expected that Υ → hbππ decay is suppressed because this process needs spin flip of

a heavy quark. However, the experimental data shows that Υ(5S)→ hb(kP )ππ decays

have almost same probabilities as Υ(5S)→ Υ(nS)ππ [1]. This can be explained by the

wave function of (5.38) and (5.39). In fact, if a two pion emission process from Υ(5S)

occurs through Zb, the first term of (5.38) or (5.39) allows the decay into hb(kP )ππ

while the second term into Υ(nS)ππ. These arguments have been already made by Fierz

transformation in [20, 67]. Here we have shown the same results in terms of the spin

re-coupling formula (5.34), which is also applied to other processes in a straightforward

manner.

Next we consider the neutral resonance Z0
b (10610) recently observed in the processes

Υ(5S) → π0π0Υ(1S, 2S) by Belle group [4]. It is possible for Z0
b (10610) to decay into
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Zbスピン構造は次のように与えられる

Zb

Zb’

:

:

SH ⊗ SlComponent

1�
2
(0�H � 1�l )� 1�

2
(1�H � 0�l )

1�
2
(0�H � 1�l ) +

1�
2
(1�H � 0�l )1�

2
(BB̄� �B�B̄)(3S1)

B�B̄�(3S1)

Zbは0Hと1Hの混合状態! 
(0H ⊗ 1l) の崩壊先はhbπ, ηbγ , ...  
(1H ⊗ 0l) の崩壊先はΥπ, χbJγ , ...

➜

➜

A. Bondar, et al, !
PRD84 054010 (2011)



Zb ➜ χbJ γ
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χb2 + γ(P-wave)

χb0 + γ(P-wave)

χb1 + γ(P-wave)

= (1�H � 1�l )|J=0 � (0+
H � 1+

l )

=
1
3
(1�H � 0�l )� 1�

3
(1�H � 1�l )|J=1 +

�
5

3
(1�H � 2�l )|J=1

= � 1�
3
(1�H � 0�l ) +

1
2
(1�H � 1�l )|J=1 +

15
6

(1�H � 2�l )|J=1

= �
�

5
3

(1�H � 0�l ) +
�

15
6

(1�H � 1�l )|J=1 +
1
6
(1�H � 2�l )|J=1

|�b0�(M1) > |J=1

|�b1�(M1) > |J=1

|�b2�(M1) > |J=1

�(Z0
b � �b0�) : �(Z0

b � �b1�) : �(Z0
b � �b2�)

1 : 3 : 5

  

S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, !
Phys.Rev. D86, 117502 (2012).



Decays of Zb ➜ Υ(nS)π via triangle diagrams  
in heavy meson molecules 
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S. Ohkoda, S. Yasui and A. Hosaka, !
arXiv: 1310.3029 (2013)



Zb(’)の分岐比

Belle results in quarkonium Roman Mizuk

Table 1: Branching fractions (B) of Zb(10610) and Zb(10650) assuming that the observed so far channels
saturate their decays.

Channel B of Zb(10610), % B of Zb(10650), %
ϒ(1S)π+ 0.32±0.09 0.24±0.07
ϒ(2S)π+ 4.38±1.21 2.40±0.63
ϒ(3S)π+ 2.15±0.56 1.64±0.40
hb(1P)π+ 2.81±1.10 7.43±2.70
hb(2P)π+ 2.15±0.56 14.8±6.22
B+  B∗0 +  B0B∗+ 86.0±3.6 –
B∗+  B∗0 – 73.4±7.0

3. Evidence for neutral isotriplet member Zb(10610)0

Both Zb(10610) and Zb(10650) are isotriplets with only charged components observed orig-
inally. Belle searched for their neutral components using the ϒ(5S) → ϒ(nS)π0π0 (n = 1,2)
decays [8]. These decays are observed for the first time and the measured branching fractions
B[ϒ(5S) → ϒ(1S)π0π0] = (2.25 ± 0.11 ± 0.22)× 10−3 and B[ϒ(5S) → ϒ(2S)π0π0] = (3.66 ±

0.22±0.48)×10−3, are in agreement with isospin relations.
Belle performed the Dalitz plot analyses of the ϒ(5S) → ϒ(1S,2S)π0π0 transitions using the

same model as for the charged pion channels (see Fig. 4). The Zb(10610)0 signal is found in
the ϒ(2S)π0 channel with the significance of 4.9σ including systematics. The Zb(10610)0 mass
of (10609+8

−6 ± 6)MeV/c2 is consistent with the charged Zb(10610)± mass. The signal of the
Zb(10610)0 in the ϒ(1S)π0 channel and the Zb(10650)0 signal are insignificant. The Belle data do
not contradict the existence of the Zb(10610)0 → ϒ(1S)π0 and the Zb(10650)0, but the available
statistics are insufficient to establish these signals.

4. Interpretations

As discussed at the end of Section 2, the assumption of molecular B(∗)  B∗ structure naturally
explains all observed so far properties of the Zb states. Their dynamical model, however, is an open
question. Proposed interpretations include presence of the compact tetraquark [9], non-resonant
rescattering [10], multiple rescatterings that result in the amplitude pole known as coupled channel
resonance [11] and deutron-like molecule bound by meson exchanges [12]. All these mechanisms
(except for the tetraquark) are intimately related and correspond rather to quantitative than to qual-
itative differences. Further experimental and theoretical studies are needed to clarify the nature of
the Zb states.

As discussed in Ref. [5], based on heavy quark symmetry one can expect more states with
similar nature but with differing quantum numbers. Such states should be accessible in radiative
and hadronic transitions in data samples with high statistics at and above the ϒ(5S), that will be
available at the SuperKEKB.

5

Belle Collaboration, 
arXiv:1206.6450

 16

オープンフレーバーチャンネルへの崩壊が占有的 
hbπ抑制されていない
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5

~×10
~×0.5

Belle Collaboration, 
arXiv:1206.6450

分岐比に位相空間の違いが反映されていない?
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ダイアグラム : Zb(’)+ ➜ Υ(nS)π+

BB̄∗ and B∗B̄, Z ′
b is B∗B̄∗ molecule, we define the wavefunction of them as

|Zb⟩ =
1√
2
|BB̄∗ −B∗B̄⟩ , (1)

|Z ′
b⟩ = |B∗B̄∗⟩ . (2)

As hadronic molecular picture, the diagrams contributing to the decay Z(′)+
b → Υ(nS)π+

will be discribed with the intermediate BB∗ meson loops at lowest order. To calculate

the amplitude, we need to set the effective Lagrangians for the couplings. We set the

phenomenological Lagrangians at vertices of Z(′)
b and B(∗) mesons, which is

LZBB∗ = gZBB∗Zµ(BB̄∗
µ + B∗

µB̄) , (3)

LZ′B∗B∗ = gZ′B∗B∗ϵµναβ∂µZ
′
νB

∗
αB̄∗

β , (4)

where the coupling constants gZBB∗ and gZ′B∗B∗ are determined from the experimental

obsereved values for Z ′ → B∗B̄∗. The experimental results indicate that Γ(Z+
b → B+B̄∗0 +

B∗+B̄0) = 15.82 MeV and Γ(Z ′+
b → B∗+B̄∗0) = 8.44 MeV. Then we set the gBB∗Zb

= 1.04

and gB∗B∗Z′
b
= 1.30 to reproduce the decay widths of the open flavor channels.

We adopt the effective Lagrangians for the couplings reflected on heavy quark and chiral

symmetries [6]. Their forms are as follows:

LBB∗π = −igBB∗π(Bi∂µπijB̄
∗µ
j −B∗µ

i ∂µπijB̄j) , (5)

LB∗B∗π =
1

2
gB∗B∗πϵµναβB∗

iµ

←→
∂ αB̄∗

jβ∂νπij , (6)

LBBΥ = igBBΥΥµ(∂µBB −B∂µB) , (7)

LBB∗Υ = −gBB∗Υϵµναβ∂µΥν(∂αB∗
βB + B∂αB∗

β) , (8)

LB∗B∗Υ = −igB∗B∗Υ {Υµ(∂µB
∗νB∗

ν −B∗ν∂µB
∗
ν) + (∂µΥνB

∗ν −Υν∂µB
∗ν)B∗ν

+B∗µ(Υν∂µB
∗
ν − ∂µΥνB∗ν)} (9)

Coupling constants gBB∗π and gB∗B∗π are related by the heavy quark symmetry as follows:

gBB∗π =
2g

fπ

√
mBm∗

B , gB∗B∗π =
gBB∗π√
mBm∗

B

, (10)

where fπ = 132MeV is the pion decay constant. It is difficlut to determine the coupling g

from the experimental value in bottom sector, owing to kinematically forbidden the decay

B∗ → Bπ. We adopt g = 0.59

3

Zb(’)をメソン分子状態であると仮定する

メソンループを介したZb崩壊のダイアグラム

Zb Zb’
ΥΥ

π π

B

B* B*

B*

B(*)B(*)
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有効ラグランジアン

BB̄∗ and B∗B̄, Z ′
b is B∗B̄∗ molecule, we define the wavefunction of them as

|Zb⟩ =
1√
2
|BB̄∗ −B∗B̄⟩ , (1)

|Z ′
b⟩ = |B∗B̄∗⟩ . (2)

As hadronic molecular picture, the diagrams contributing to the decay Z(′)+
b → Υ(nS)π+

will be discribed with the intermediate BB∗ meson loops at lowest order. To calculate

the amplitude, we need to set the effective Lagrangians for the couplings. We set the

phenomenological Lagrangians at vertices of Z(′)
b and B(∗) mesons, which is

LZBB∗ = gZBB∗MzZ
µ(BB̄∗

µ + B∗
µB̄) , (3)

LZ′B∗B∗ = gZ′B∗B∗ϵµναβ∂µZ
′
νB

∗
αB̄∗

β , (4)

where the coupling constants gZBB∗ and gZ′B∗B∗ are determined from the experimental

obsereved values for Z ′ → B∗B̄∗. The experimental results indicate that Γ(Z+
b → B+B̄∗0 +

B∗+B̄0) = 15.82 MeV and Γ(Z ′+
b → B∗+B̄∗0) = 8.44 MeV. Then we set the gBB∗Zb

= 1.04

and gB∗B∗Z′
b
= 1.30 to reproduce the decay widths of the open flavor channels.

We adopt the effective Lagrangians for the couplings reflected on heavy quark and chiral

symmetries [6]. Their forms are as follows:

LBB∗π = −igBB∗π(Bi∂µπijB̄
∗µ
j −B∗µ

i ∂µπijB̄j) , (5)

LB∗B∗π =
1

2
gB∗B∗πϵµναβB∗

iµ

←→
∂ αB̄∗

jβ∂νπij , (6)

LBBΥ = igBBΥΥµ(∂µBB −B∂µB) , (7)

LBB∗Υ = −gBB∗Υϵµναβ∂µΥν(∂αB∗
βB + B∂αB∗

β) , (8)

LB∗B∗Υ = −igB∗B∗Υ {Υµ(∂µB
∗νB∗

ν −B∗ν∂µB
∗
ν) + (∂µΥνB

∗ν −Υν∂µB
∗ν)B∗ν

+B∗µ(Υν∂µB
∗
ν − ∂µΥνB∗ν)} (9)

Coupling constants gBB∗π and gB∗B∗π are related by the heavy quark symmetry as follows:

gBB∗π =
2g

fπ

√
mBm∗

B , gB∗B∗π =
gBB∗π√
mBm∗

B

, (10)

where fπ = 132MeV is the pion decay constant. It is difficlut to determine the coupling g

from the experimental value in bottom sector, owing to kinematically forbidden the decay

B∗ → Bπ. We adopt g = 0.59

3

can be related to the single quantity F̂ since f Da
! f Da*

!F̂/!mDa
.

It is also possible to write down an expression for the
strong couplings involving heavy mesons and the kaon. The
Ds
(*)D (*)K couplings, in the soft p! K→0 limit, can be related

to a single low energy parameter g, as it turns out consider-
ing the effective QCD Lagrangian describing the strong in-
teractions between the heavy Da

(*)Db
(*) mesons and the octet

of the light pseudoscalar mesons !26":

LI!ig Tr!Hb#$#5Aba
$ H a" %2.7&

with the operator A given by

A$ba!
1
2 %'†($'"'($'†&ba %2.8&

and H a!#0Ha
†#0. This allows to relate the Ds

(*)D (*)K cou-
plings, defined through the matrix elements

)D 0%p &K"%q &!Ds*"%p#q ,*&+!gDs*
"D 0K"%*•q &

)D *0%p ,,&K"%q &!Ds*"%p#q ,*&+!i*-.$#p-*.q$,#*

$gDs*
"D *0K",

%2.9&

to the coupling g:

gDs*
"D 0K"!2!mDmDs*

g
f K

gDs*
"D *0K"!"2!mDs*

mD*

g
f K
. %2.10&

All the above expressions are valid in the infinite limit for
the charm quark mass. We neglect corrections due to the
finite mass of the charm quark.

III. COUPLINGS OF PAIRS OF HEAVY-LIGHT MESONS
TO QUARKONIUM STATES

The other strong vertex in the diagrams in Fig. 1 involves
hc and a pair of open charm mesons. Also in this case we
exploit the infinite heavy quark mass limit. For mesons with
two heavy quarks Q1Q 2 heavy quark flavor symmetry does
not hold any longer, but degeneracy is expected under rota-
tions of the two heavy quark spins. This allows us to build up
heavy meson multiplets for each value of the relative angular
momentum ! . For !!0 one has a doublet comprehensive of
a pseudoscalar and a vector state, ,c and J// in case of
charmonium. The corresponding 4$4 matrix reads as !27"

R (Q1Q 2)!" 1#v”
2 # !L$#$"L#5"" 1"v”

2 # , %3.1&

with L$!J// and L!,c in the case of c c . For !!1, four
states can be built which are degenerate in the heavy quark
limit. The corresponding spin multiplet reads

P (Q1Q 2)$!" 1#v”
2 # " 02

$-#-#
1
!2

*$-.#v-#.01#

#
1
!3

%#$"v$&00#h1
$#5# " 1"v”

2 # %3.2&

where, in the case of c c , 02!0c2 , 01!0c1 and 00!0c0
correspond the spin triplet, while the spin singlet is h1!hc
!28". Also the fields in Eqs. %3.1&, %3.2& contain a factor !m ,
with m the meson mass.
Using Eqs. %3.1& and %3.2&, together with Eq. %2.1& repre-

senting the heavy-light Q1q a pseudoscalar and vector states,
it is possible to write down the expressions for the effective
couplings between heavy-heavy mesons and pairs of heavy-
light mesons we are interested in. For !!1 Q1Q 2 state, the
most general Lagrangian describing the coupling to two
heavy-light mesons Q1q a and qaQ 2 can be written as fol-
lows:

L1!i
g̃1
2 Tr!P (Q1Q 2)$H 2a%11#$#12v$&H 1a"

#H.c.#%Q1↔Q2& %3.3&

where 11 and 12 are two coefficients, H1a is given in Eq.
%2.1& and H2a is the matrix describing the heavy-light me-
sons with quark content qaQ 2:

H2a!!M a!
$#$"M a!#5"" 1"v”

2 # . %3.4&

Due to the property P$v$!0 only the term proportional to
11 contributes, and therefore

L1!i
g1
2 Tr!P (Q1Q 2)$H 2a#$H 1a"#H.c.#%Q1↔Q2&,

%3.5&

where g1! g̃1•11. This expression accounts for the fact that
the two heavy-light mesons are coupled to the heavy-heavy
state in S wave, and therefore the matrix elements do not
depend on their relative momentum. Moreover, this expres-
sion is invariant under independent rotations of the spin of
the heavy quarks, representing the decoupling of the spin in
the infinite heavy quark mass limit. This can be easily seen
considering that under independent heavy quark spin rota-
tions S1"SU(2)Q1

and S2"SU(2)Q2
the following trans-

formation properties hold for the various multiplets:
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!hc!(c c)V!A!0" is zero due to conservation of parity and
charge conjugation. This does not imply that the decay is
forbidden, as other decay mechanisms can be invoked,
namely hc production via c c pair creation in the color octet
configuration. From the hadronic point of view, one can also
consider the decay as proceeding by rescattering processes
induced by the same (b c)(c s) effective weak Hamiltonian in
Eq. #1.2$, processes that essentially account for a rearrange-
ment of the quarks in the final state. Such effects are not
CKM suppressed, and their role must be assessed by explicit
#even though model dependent$ calculations. Notice that
color octet and rescattering descriptions can represent two
ways to describe the same physics underlying the nonlep-
tonic transition, looking from the short-distance or the long-
distance view points, respectively.
We consider rescattering processes corresponding to the

decay chain B"→Xu c
0 Y c s

"→K"M c c , where X and Y are
open charm resonances primarily produced in weak B" tran-
sitions. The lowest lying intermediate states Xu c

0 and Y c s
" are

the mesons Ds
(*)" and D (*)0, and we describe their rescat-

tering by the exchange of D (s)
(*) resonances, as depicted in

Fig. 1.
In order to analyze the diagrams in Fig. 1 we need the

weak vertices B→Ds
(*)D (*) and two strong vertices, one

describing the coupling of a pair of charmed mesons to kaon,
the other one representing the interaction of the charmonium
state hc to a pair of D (s)

(*) mesons. All nonperturbative quan-
tities entering in such vertices can be related to few hadronic
parameters once the infinite heavy quark mass limit is
adopted.
In the following section we analyze the couplings of the

charmonium states to pairs of open charm mesons. Here we
consider strong interactions of mesons HQ containing a
single heavy quark Q which can be described in the frame-
work of the heavy quark effective theory #HQET$ %23&, ex-
ploiting the heavy quark spin and flavor symmetries holding
in QCD for mQ→' . In this limit the heavy quark four ve-
locity v coincides with that of the hadron and it is conserved
by strong interactions %24&. Because of the invariance under
rotations of the heavy quark spin sQ , states differing only for
the orientation of sQ are degenerate in mass and form a dou-
blet. When the orbital angular momentum of the light de-
grees of freedom relative to Q is !#0, the two states in the
doublet have spin-parity JP#(0",1") and correspond to
(D (s) , D (s)* ), (B (s) , B (s)* ). This doublet can be represented
by a 4$4 matrix:

Ha#" 1%v”
2 # %M a

()("M a)5& , #2.1$

with M ( corresponding to the vector state and M to the pseu-
doscalar one (a is a light flavor index$. The fields M a and
M a* contain a factor !mMa

(*), with m the meson mass.
In the infinite heavy quark mass limit it is possible to

express weak as well as strong matrix elements involving
heavy mesons in terms of few universal quantities. Let us
consider the weak amplitude B"→Ds

(*)"D (*)0, for which

there is empirical evidence that the calculation by factoriza-
tion reproduces the main experimental findings %25&. Ne-
glecting the contribution of the operators O3"10 in Eq. #1.3$
we can write

!Ds
(*)"D (*)0!HW!B""#

GF

!2
VcbVcs* a1!D (*)0!#V"A $(!B""

$!Ds
(*)"!#V"A $(!0" #2.2$

with a1#c1%c2 /Nc . In the infinite heavy quark mass limit,
the matrix elements in Eq. #2.2$ can be written in terms of a
single form factor, the Isgur-Wise function * , and a single
leptonic constant F̂ %23&. The B"→D (*)0 matrix elements
read

!D0#v!$!V(!B"#v $"#!mBmD*#v•v!$#v%v!$(

!D*0#v!,+$!V(!B"#v $"#"i!mBmD**#v•v!$

$+,*-.,)(v.v)! #2.3$

!D*0#v!,+$!A(!B"#v $"#!mBmD**#v•v!$

$+,*%#1%v•v!$g,("v,v!(& ,

v and v! being B" and D (*)0 four-velocities, respectively, +
the D* polarization vector and *(v•v!) the Isgur-Wise form
factor. The weak current for the transition from a heavy to a
light quark Q→qa , given at the quark level by q a)((1
")5)Q , can be written in terms of a heavy meson and light
pseudoscalars. The octet of the light pseudoscalar mesons is
represented by *#eiM/ f , with

M#"!1
2/0%!1

60 /% K%

/"
"!1

2/0%!1
60 K0

K" K 0 "!2
30

#
#2.4$

and f $ f /#131 MeV, and the effective heavy-to-light cur-
rent, written at the lowest order in the light meson deriva-
tives, reads

La
(#

F̂
2 Tr%)(#1")5$Hb*ba

† & . #2.5$

In this way the matrix elements !0!q a)((1
")5)c!Da

(*)(v)" , defined as

!0!q a)()5c!Da#v $"# f Da
mDa

v(

!0!q a)(c!Da*#v ,+$"# f Da*mDa*+
( #2.6$
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ZBB*とZB*B*のラグランジアン 
結合定数はZb ➜ BB*とZb'➜ B*B*の崩壊幅から決定する

パイオンとB(B*)メソンのラグランジアン 
結合定数gはD*➜Dπ崩壊から決定する(HQS)

g = 0.59
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ΥとB(B*)メソンのラグランジアン
H1a→S1H1a H 1a→H 1aS1

†

H2a→H2aS2
† H 2a→S2H 2a

P (Q1Q 2)!→S1P (Q1Q 2)! P (Q1Q 2)!→P (Q1Q 2)!S2
†

R (Q1Q 2)→S1R (Q1Q 2) R (Q1Q 2)→R (Q1Q 2)S2
† . "3.6#

Equation "3.5# shows that a unique coupling describes the
P!HH interaction, i.e. the same coupling controls the inter-
action of heavy-light mesons both with the three $c states,
both with hc . In particular, from Eq. "3.5# it follows that

%D "s #* "p1 ,&1#D (s)"p2#!hc"p ,&#'!gD(s)* D(s)hc
"&1*•&#

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!hc"p ,&#'

!igD(s)* D(s)* hc

"&()*+p(&)&1**&2*+ "3.7#

with

gD(s)* D(s)hc
!#2g1!mhc

mD(s)
mD(s)*

gD(s)* D(s)* hc
!2g1!mD(s)*

2

mhc

. "3.8#

Analogously:

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!$c0"p #'!#gD(s)* D(s)* $c0
"&1*•&2*#

%D (s)"p1#D (s)"p2#!$c0"p #'!#gD(s)D(s)$c0
"3.9#

with

gD(s)* D(s)* $c0
!#

2
!3

g1!m$c0
mD(s)*

gD(s)D(s)$c0
!#2!3g1!m$c0

mD(s)
. "3.10#

The subscripts "1# and "2# refer to the meson with a charm
and an anticharm quark, respectively; & , &1 and &2 are polar-
ization vectors.
Equations "3.7#–"3.9# show that spin symmetry produces

stringent relations between the couplings of $c0 and hc to
open charm mesons, relations that we exploit below. More-
over, they also imply that the couplings of a single charmo-
nium state to open charm pseudoscalar and vector mesons
are related in absolute value and in sign as well, a property
that allows a proper analysis of the amplitudes in Fig. 1
where the relative signs between different amplitudes play an
important role.
For the !!0 states represented by the multiplet "3.1#, the

interactions with the heavy-light vector and pseudoscalar
mesons proceed in P wave and can be described by a La-
grangian containing a derivative term:

L2!
g2
2 Tr,R (Q1Q 2)H 2a -”↔H 1a.$H.c.$"Q1↔Q2#

"3.11#

which is also invariant under independent heavy quark spin
rotations. The action of the derivative produces a factor of
the residual momentum k, i.e. the quantity for which the
hadron and the heavy quark four momentum differ: M Hv!
!mQv!$k! , k being finite in the heavy quark limit. The
couplings of heavy-light charmed mesons to J// follow
from Eq. "3.11#:

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!J//"p ,&#'

!gD(s)* D(s)* /,"&•&2*#"&1*•q #

#"&•q #"&1*•&2*#$"&•&1*#"&2*•q #]

%D "s #* "p1 ,&1#D (s)"p2#!J//"p ,&#'

!gD(s)* D(s)/
i&)!(*v)&!&1*(q*

"3.12#

%D (s)"p1#D (s)"p2#!J//"p ,&#'

!gD(s)D(s)/"&•q #

where q is the difference in the residual momenta of the two
heavy-light charmed mesons q!k1#k2. Since p1!mD(s)

(*)v
$k1 and p2!mD(s)

(*)v$k2, then q!p1#p2. The three cou-
plings in Eq. "3.12# are related to the single parameter g2:

gD(s)* D(s)* /!#2g2!m/mD(s)*

gD(s)* D(s)/
!2g2!m/mD(s)

mD(s)*
"3.13#

gD(s)D(s)/
!2g2!m/mD(s)

.

In principle, the couplings g1 and g2 must be computed
by nonperturbative methods. An estimate can be obtained
invoking vector meson dominance "VMD# arguments. For
example, one can consider the D-meson matrix element of
the scalar c c current: %D(v!)!c c!D(v)', assuming the domi-
nance in the t channel of the nearest resonance, i.e. the scalar
c c state, and using the normalization of the Isgur-Wise form
factor at the zero-recoil point v!v!. This allows to express
gDD$c0

in terms of the constant f $c0
that parametrizes the

matrix element

%0!c c!$c0"q #'! f $c0
m$c0

, "3.14#

obtaining

gDD$c0
!2

mDm$c0

f $c0

, "3.15#

a relation which determines g1 once f $c0
is known:
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can be related to the single quantity F̂ since f Da
! f Da*

!F̂/!mDa
.

It is also possible to write down an expression for the
strong couplings involving heavy mesons and the kaon. The
Ds
(*)D (*)K couplings, in the soft p! K→0 limit, can be related

to a single low energy parameter g, as it turns out consider-
ing the effective QCD Lagrangian describing the strong in-
teractions between the heavy Da

(*)Db
(*) mesons and the octet

of the light pseudoscalar mesons !26":

LI!ig Tr!Hb#$#5Aba
$ H a" %2.7&

with the operator A given by

A$ba!
1
2 %'†($'"'($'†&ba %2.8&

and H a!#0Ha
†#0. This allows to relate the Ds

(*)D (*)K cou-
plings, defined through the matrix elements

)D 0%p &K"%q &!Ds*"%p#q ,*&+!gDs*
"D 0K"%*•q &

)D *0%p ,,&K"%q &!Ds*"%p#q ,*&+!i*-.$#p-*.q$,#*

$gDs*
"D *0K",

%2.9&

to the coupling g:

gDs*
"D 0K"!2!mDmDs*

g
f K

gDs*
"D *0K"!"2!mDs*

mD*

g
f K
. %2.10&

All the above expressions are valid in the infinite limit for
the charm quark mass. We neglect corrections due to the
finite mass of the charm quark.

III. COUPLINGS OF PAIRS OF HEAVY-LIGHT MESONS
TO QUARKONIUM STATES

The other strong vertex in the diagrams in Fig. 1 involves
hc and a pair of open charm mesons. Also in this case we
exploit the infinite heavy quark mass limit. For mesons with
two heavy quarks Q1Q 2 heavy quark flavor symmetry does
not hold any longer, but degeneracy is expected under rota-
tions of the two heavy quark spins. This allows us to build up
heavy meson multiplets for each value of the relative angular
momentum ! . For !!0 one has a doublet comprehensive of
a pseudoscalar and a vector state, ,c and J// in case of
charmonium. The corresponding 4$4 matrix reads as !27"

R (Q1Q 2)!" 1#v”
2 # !L$#$"L#5"" 1"v”

2 # , %3.1&

with L$!J// and L!,c in the case of c c . For !!1, four
states can be built which are degenerate in the heavy quark
limit. The corresponding spin multiplet reads

P (Q1Q 2)$!" 1#v”
2 # " 02

$-#-#
1
!2

*$-.#v-#.01#

#
1
!3

%#$"v$&00#h1
$#5# " 1"v”

2 # %3.2&

where, in the case of c c , 02!0c2 , 01!0c1 and 00!0c0
correspond the spin triplet, while the spin singlet is h1!hc
!28". Also the fields in Eqs. %3.1&, %3.2& contain a factor !m ,
with m the meson mass.
Using Eqs. %3.1& and %3.2&, together with Eq. %2.1& repre-

senting the heavy-light Q1q a pseudoscalar and vector states,
it is possible to write down the expressions for the effective
couplings between heavy-heavy mesons and pairs of heavy-
light mesons we are interested in. For !!1 Q1Q 2 state, the
most general Lagrangian describing the coupling to two
heavy-light mesons Q1q a and qaQ 2 can be written as fol-
lows:

L1!i
g̃1
2 Tr!P (Q1Q 2)$H 2a%11#$#12v$&H 1a"

#H.c.#%Q1↔Q2& %3.3&

where 11 and 12 are two coefficients, H1a is given in Eq.
%2.1& and H2a is the matrix describing the heavy-light me-
sons with quark content qaQ 2:

H2a!!M a!
$#$"M a!#5"" 1"v”

2 # . %3.4&

Due to the property P$v$!0 only the term proportional to
11 contributes, and therefore

L1!i
g1
2 Tr!P (Q1Q 2)$H 2a#$H 1a"#H.c.#%Q1↔Q2&,

%3.5&

where g1! g̃1•11. This expression accounts for the fact that
the two heavy-light mesons are coupled to the heavy-heavy
state in S wave, and therefore the matrix elements do not
depend on their relative momentum. Moreover, this expres-
sion is invariant under independent rotations of the spin of
the heavy quarks, representing the decoupling of the spin in
the infinite heavy quark mass limit. This can be easily seen
considering that under independent heavy quark spin rota-
tions S1"SU(2)Q1

and S2"SU(2)Q2
the following trans-

formation properties hold for the various multiplets:
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TABLE I: Coupling constants gn and the mass-shifts δM of Zb. Mth is the thresholds of the decay

channel. Unit of the values is MeV

Υ(1S)π Υ(2S)π Υ(3S)π

Exp. 0.10 1.00 0.68

g2
B∗B(∗)Υ

qcm 0.78 1.00 0.61

gB∗B∗Υ 13.3 20.2 24.2

qcm(MeV) 1119 617 261

4

Vector meson dominance(VMD)によって結合定数を決める

≈

TABLE I: Coupling constants gn and the mass-shifts δM of Zb. Mth is the thresholds of the decay

channel. Unit of the values is MeV

Υ(1S)π Υ(2S)π Υ(3S)π

Exp. 0.10 1.00 0.68

g2
B∗B(∗)Υ

qcm 0.78 1.00 0.61

gB∗B∗Υ 13.3 20.2 24.2

qcm(MeV) 1119 617 261

4

B

B B

B
Υ

< 0|b�µb̄|� >= f�⇥µ gBB�(nS) =
m�(nS)

f�(nS)

gBB�(1S) = 13.2

gBB�(3S) = 24.1

gBB�(2S) = 20.1

P. Colangelo, et al,  
PRD64 054023 (2004)
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Zb’+ ➜ Υ(nS)π+の遷移振幅
遷移振幅は次のように計算する

P
q

P-q
q-P+k

p=P-k

k

iM(B)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′ϵµναβP µϵν

zϵ
α
B∗+ϵβ

B̄∗0 ]

× [igB∗B∗Υ(nS)ϵδτθφv
δϵτ

υϵ
α
B∗+(2q − P + k)φ][gBB∗π(ϵB̄∗0 · k)]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − P + k)2 −m2
B

F(q2, k2) (11)

F(q2, k2) =
Λ2

Z

q2 + Λ2
Z

Λ2

k2 + Λ2

Λ2

k2 + Λ2
(12)

TABLE I: The partial decay widths of Zb(10610)+.

No Cutoff ΛZ = 1100 , Λ = 600 exp

Υ(1S)π+ 95.5 0.081 0.059

Υ(2S)π+ 19.8 0.51 0.806

Υ(3S)π+ 0.485 0.14 0.396

TABLE II: The partial decay widths of Z ′
b(10650)+.

No Cutoff ΛZ = 1000 , Λ = 600 exp

Υ(1S)π+ 71.3 0.044 0.028

Υ(2S)π+ 17.6 0.31 0.28

Υ(3S)π+ 0.86 0.18 0.19
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4

形状因子を導入する

Z(′)
b → Υ(nS) + π+ as follows:

iM(B)
BB∗ = (i)3

∫
d4q

(2π)4
[igZMZϵZ · ϵ1][gBBΥ(nS) (ϵΥ · (2q − p))][gB∗B∗π(ϵ1 · k)]

× 1

(q)2 −m2
B

1

(P − q)2 −m2
B∗

1

(q − p)2 −m2
B

F(q⃗2, k⃗2) (12)

iM(B∗)
BB∗ = (i)3

∫
d4q

(2π)4
[igZMZϵZ · ϵ1][gBB∗Υ(nS)iϵαβγδv

αϵβ
Υϵγ(2q − p)δ]

× [iϵabcdgB∗B∗πMB∗vaϵb
2k

cϵd
1]

× 1

(q)2 −m2
B

1

(P − q)2 −m2
B∗

1

(q − p)2 −m2
B∗

F(q⃗2, k⃗2) (13)

iM(B∗)
B∗B = (i)3

∫
d4q

(2π)4
[igZMZϵZ · ϵ1][gBB∗π]

×
[
gB∗B∗Υ(nS) {(ϵΥ · ϵ2) (ϵ1 · (2q − p)) + (ϵΥ · ϵ1) (ϵ2 · (2q − p))− (ϵ1 · ϵ3 = 2) (ϵΥ · (2q − p))}

]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B

1

(q − p)2 −m2
B∗

F(q⃗2, k⃗2) (14)

iM(B)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′ϵµναβP µϵν

zϵ
α
B∗+ϵβ

B̄∗0 ]

× [igB∗B∗Υ(nS)ϵδτθφv
δϵτ

υϵ
α
B∗+(2q − P + k)φ][gBB∗π(ϵB̄∗0 · k)]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − p)2 −m2
B

F(q⃗2, k⃗2) (15)

iM(B∗)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′ϵµναβP µϵν

zϵ
α
1 ϵβ

2 ][igB∗B∗πϵ0τθφMB∗ϵτ
3k

θϵ2]

×
[
gB∗B∗Υ(nS) {(ϵΥ · ϵ1) (ϵ3 · (2q − p)) + (ϵΥ · ϵ3) (ϵ1 · (2q − p))− (ϵ1 · ϵ3) (ϵΥ · (2q − p))}

]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − p)2 −m2
B∗

F(q⃗2, k⃗2) (16)

We introduce the form factor F(q⃗2, k⃗2) to reflect the finite interaction range, which is given

as

F(q⃗2, k⃗2) =
Λ2

Z

q⃗2 + Λ2
Z

Λ2

k⃗2 + Λ2

Λ2

k⃗2 + Λ2
, (17)

Total amplitudes are given as

MZb
= 2(M(B)

BB∗ + M(B∗)
BB∗ + M(B∗)

B∗B) , (18)

MZ′
b

= 2(M(B)
B∗B∗ + M(B∗)

B∗B∗) . (19)

[1] Belle Collaboration, I. Adachi, (2011), arXiv:1105.4583.

5

 21



結果
部分崩壊幅 : Zb(10610)

部分崩壊幅 : Zb’(10650)

終状態の運動量が結果を大きく左右する 
形状因子が重要

S. O, S. Yasui and A. Hosaka  
arXiv:1310.3029

 22

TABLE V: The partial decay widths of Zb(10610)+ for various cutoff parameters ΛZ in units of

MeV. Λ = 600 MeV is fixed. The left column shows the results without the form factors.

ΛZ - 1000 Exp.

Υ(1S)π+ 96.3 0.074 0.059 ± 0.017

Υ(2S)π+ 20.0 0.47 0.81 ± 0.22

Υ(3S)π+ 0.498 0.14 0.40 ± 0.10

TABLE VI: The partial decay widths of Zb(10650)+. Λ = 600 MeV is fixed. The unit is MeV.

ΛZ - 1000 Exp.

Υ(1S)π+ 71.3 0.044 0.028 ± 0.008

Υ(2S)π+ 17.6 0.31 0.28 ± 0.07

Υ(3S)π+ 0.858 0.18 0.19 ± 0.05

(2011), arXiv:1105.4473.

[4] J.-R. Zhang, M. Zhong, and M.-Q. Huang, Phys.Lett. B704, 312 (2011), arXiv:1105.5472.

[5] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys.Rev. D86, 014004 (2012),

arXiv:1111.2921.

[6] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.Rev. D86, 117502 (2012),

arXiv:1210.3170.

[7] C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Phys.Rev. D85, 074014 (2012), arXiv:1107.1343.

[8] Belle Collaboration, I. Adachi et al., (2012), arXiv:1209.6450.

[9] BESIII Collaboration, M. Ablikim et al., Phys.Rev.Lett. 110, 252001 (2013), arXiv:1303.5949.

[10] Belle Collaboration, Z. Liu et al., Phys.Rev.Lett. 110, 252002 (2013), arXiv:1304.0121.

[11] M. Cleven et al., Phys.Rev. D87, 074006 (2013), arXiv:1301.6461.

[12] G. Li, F.-l. Shao, C.-W. Zhao, and Q. Zhao, Phys.Rev. D87, 034020 (2013), arXiv:1212.3784.

[13] P. Colangelo, F. De Fazio, and T. Pham, Phys.Rev. D69, 054023 (2004), arXiv:hep-

ph/0310084.

[14] Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, J.Phys. G40, 015002 (2013),

arXiv:1203.1894.

[15] Particle Data Group, J. Beringer et al., Phys.Rev. D86, 010001 (2012).

[16] F. Aceti, R. Molina, and E. Oset, Phys.Rev. D86, 113007 (2012), arXiv:1207.2832.

10

TABLE V: The partial decay widths of Zb(10610)+ for various cutoff parameters ΛZ in units of

MeV. Λ = 600 MeV is fixed. The left column shows the results without the form factors.

ΛZ - 1000 Exp.

Υ(1S)π+ 96.3 0.074 0.059 ± 0.017

Υ(2S)π+ 20.0 0.47 0.81 ± 0.22

Υ(3S)π+ 0.498 0.14 0.40 ± 0.10

TABLE VI: The partial decay widths of Zb(10650)+. Λ = 600 MeV is fixed. The unit is MeV.

ΛZ - 1000 Exp.

Υ(1S)π+ 71.3 0.044 0.028 ± 0.008

Υ(2S)π+ 17.6 0.31 0.28 ± 0.07

Υ(3S)π+ 0.858 0.18 0.19 ± 0.05

(2011), arXiv:1105.4473.

[4] J.-R. Zhang, M. Zhong, and M.-Q. Huang, Phys.Lett. B704, 312 (2011), arXiv:1105.5472.

[5] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys.Rev. D86, 014004 (2012),

arXiv:1111.2921.

[6] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.Rev. D86, 117502 (2012),

arXiv:1210.3170.

[7] C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Phys.Rev. D85, 074014 (2012), arXiv:1107.1343.

[8] Belle Collaboration, I. Adachi et al., (2012), arXiv:1209.6450.

[9] BESIII Collaboration, M. Ablikim et al., Phys.Rev.Lett. 110, 252001 (2013), arXiv:1303.5949.

[10] Belle Collaboration, Z. Liu et al., Phys.Rev.Lett. 110, 252002 (2013), arXiv:1304.0121.

[11] M. Cleven et al., Phys.Rev. D87, 074006 (2013), arXiv:1301.6461.

[12] G. Li, F.-l. Shao, C.-W. Zhao, and Q. Zhao, Phys.Rev. D87, 034020 (2013), arXiv:1212.3784.

[13] P. Colangelo, F. De Fazio, and T. Pham, Phys.Rev. D69, 054023 (2004), arXiv:hep-

ph/0310084.

[14] Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, J.Phys. G40, 015002 (2013),

arXiv:1203.1894.

[15] Particle Data Group, J. Beringer et al., Phys.Rev. D86, 010001 (2012).

[16] F. Aceti, R. Molina, and E. Oset, Phys.Rev. D86, 113007 (2012), arXiv:1207.2832.

10

[MeV]

[MeV]



カットオフ依存性 : Zb(10650)

 23

Zb’+ ➜ Υ(nS) π+ 

Λ=600 MeV
Zb’+ ➜ Υ(nS) π+ 

ΛZ = 1000 MeV 



Zc+ ➜ ψ(nS)π+
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Zc(3900) : M = 3899.0MeV, Γ=46MeV (BESIII)
M = 3894.5MeV, Γ=63MeV (Belle)

Zc(3900)はDD*分子状態でZbのフレーバーパートナー？
部分崩壊幅 : Zc(3900)

f(Zc+➜J/ψπ+)=1.2-1.3％,  f(Zc+➜ψ(2S)π+)=0.31- 0.33％
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TABLE VII: The partial decay widths of Z+
c . Λ = 600 MeV is fixed. The unit is MeV.

ΛZ - 1000 Exp.

J/ψπ+ 39.0 0.66 -

ψ(2S)π+ 0.305 0.18 -
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Zbの崩壊特性をメソン分子状態の観点から調べた 
スピン構造はエキゾチック粒子の生成と崩壊の性質を
調査するのに有効 
Zb ➜ Υπ崩壊幅は、メソンループと形状因子によって
説明できる 
f(Zc+➜J/ψπ+)=1.2-1.3％,                                         
f(Zc+➜ψ(2S)π+)=0.31-0.33％

まとめ
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