Construction of KN potential based on chiral unitary approach

Kyoto Univ. Tetsuo Hyodo

J-PARC workshop 2014, August

Motivation

Cf. Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002) T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

KN interaction is strongly attractive

interesting phenomena of few body systems

to calculate few body systems

Previous work

T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008)

calculated the KN amplitude

- chiral unitary approach
 channel coupling (πΣ, K̄N, ηΛ, KΞ)

made the equivalent local potential

- KN single-channel
 coordinate space representation

> chiral unitary approach

> channel coupling

in S=-1, I=0 sector

 $\overline{K}N$ - $\pi\Sigma$ coupling leads to **double pole** structure

equivalent local potential

$$\begin{split} V^{equiv}(r,E) &= g(r)N(E) \ (V^{eff}(E) + \underline{\Delta V(E)}) \\ & \swarrow \\ & \forall \text{ith } g(r) = \frac{1}{\pi^{3/2}b^3}e^{-r^2/b^2} \\ & \text{correction} \\ & \text{so that } F_{\bar{K}N} \sim F_{\bar{K}N}^{Ch} \\ & g(r) \ [\sum_n C_n E^n] \ \text{ fit with a polynomial} \end{split}$$

Results

This work

• analytic continuation of $F_{\bar{K}N}$ with V^{equiv} to the complex energy plane

cf. A. Dote, T. Hyodo and W. Weise (2009) :

Y. Ikeda, H. Kamano and T. Sato (2010):

KN system

KNN system

- the difference of pole structure may affect the binding energy of the few body system
 - We want to improve V^{equiv} to reproduce $F_{\bar{K}N}^{Ch}$ in the complex E plane

improvement

1) deviation of the amplitude on the real axis

change ΔV and fitting range

	Hyodo- Weise	Potential1 (This work)	Chiral unitary
ΔV	real	complex	
fit rang [MeV]	1300~1410	1331~1450	
∆Freal [%]	13	0.45	
Pole [MeV]	1421-35i	1427-17i	1428-17i 1400-76i

 ΔF_{real} and pole position are greatly improved

2) precise area in the complex plane

≻ <u>Results</u>

- the first pole reproduces the original one against the change of fitting range
- We get second pole
- P_{comp} changes depending on fitting range

<u>Summary</u>

- > In the previous work, $F_{\bar{K}N}$ does not reproduce $F_{\bar{K}N}^{Ch}$ well in the complex energy plane
- We improved the equivalent potential
 - 1) changed ΔV to complex value
 - ΔF_{real} becomes much better
 - 2) improved the fitting function, and broaden fitting range second pole appears and P_{comp} becomes better
 - Improving the amplitude on the real axis is important for the amplitude in the complex plane, including pole structure

• KN single-channel effective interaction situation : nonrelativistic and S-wave

improvement

We focus on these points

1) deviation of the amplitude on the real axis

Second pole position

Figure of ΔF-Pcomp

