N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam)

Hiroyuki Kamano (RCNP, Osaka U.)

Mini workshop on "Structure and productions of charmed baryons II" KEK Tokai Campus, Tokai, Aug. 7-9, 2014

Outline

 Brief description of ANL-Osaka Dynamical Coupled-Channels (DCC) approach & N* spectroscopy from the analysis of πN and γN reactions (HK, Nakamura, Lee, Sato, PRC88(2013)035209)

 Y* (= Λ*, Σ*) spectroscopy using Kaon beam (HK, Nakamura, Lee, Sato, arXiv:1407.6839; in preparation)

 Applications of ANL-Osaka DCC approach to forward p(π, ρ or K*)X with high-momentum pion beam (HK in preparation)

Brief description of ANL-Osaka DCC approach & N* spectroscopy from the analysis of πN and γN reactions (1 of 3)

Introductory remarks

"Light-quark baryon spectroscopy"

Ν*, Δ*, Λ*, Σ*

= "Physics of very broad and highly overlapping resonances"

- Resonances are strongly correlated with each other in the reaction processes over the wide energy region.
- Resonances appear in the cross sections as rather complicated interference.
- To disentangle the above complications and establish resonance mass spectrum, the followings must be accomplished:
 - Simultaneous partial-wave analysis of various meson-production reactions over the wide energy range within multichannel reaction framework.
 - Careful investigation of the analysis results in an comprehensive manner.
- This requires extensive and accurate data of various meson production reactions that covers:
 - wide energy and kinematical (angles, Q2,...) regions.
 - both *unpolarizaed* and *polarized* observables.

Introductory remarks

Experimental and theoretical efforts for N* spectroscopy — Experiments — _ _ _ Theoretical analyses

with multichannel framework

ANL-Osaka/EBAC-JLab Bonn-Gatchina Carnegie-Mellon-Berkeley Dubna-Mainz-Taipei Giessen GWU/VPI Juelich Karlsruhe-Helsinki

JLab, ELSA, MAMI, GRAAL, SPring-8, ELPH, ✓ Multichannel unitary condition: $T_{ab}(E) - T_{ab}^{\dagger}(E) = -2\pi i \sum_{\alpha} T_{ac}^{\dagger} \delta(E - E_c) T_{cb}(E)$ $a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \pi N, K\Lambda, K\Sigma, \omega N \cdots)$

ANL-Osaka DCC approach to N*

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

Coupled-channels effect

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K\Delta, K\Sigma, \cdots)$$

$$\pi \pi N$$

Summing up all possible transitions between reaction channels !!
 (→ satisfies two- and three-body unitarity)

e.g.)πN scattering

Momentum integral takes into account off-shell effects in the intermediate processes.

ANL-Osaka DCC approach to N*

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

Coupled-channels effect

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K\Delta, K\Sigma, \cdots)$$

$$\pi \pi N$$

Latest published model:

HK, Nakamura, Lee, Sato, PRC88(2013)035209

Constructed by simultaneous analysis of

- πN scattering (W < 2.3 GeV)
- πp → ηN, KΛ, KΣ (W < 2.1 GeV)
- γp → πN, ηN, KΛ, KΣ (W < 2.1 GeV)

$\gamma p \rightarrow K^+ \Sigma^0$ reaction

8ch DCC-analysis [HK, Nakamura, Lee, Sato, PRC88 (2013) 035209]

Cx'

At present, NO data are available for the other 11 observables (as of 2013): T, E, F, G, H, Ox', Oz', Lx', Lz', Tx', Tz'

$\gamma p \rightarrow K^+ \Sigma^0$ reaction

HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

Short summary and remarks (1/3)

Main interests in N* in the near future (in my view):

✓ Establishing the spectrum for high-mass N*s (1.7 < M < 2.5 GeV)

LEPS2 can play a key role !! (with their polarized photons; hopefully also polarized targets and recoil particles)

- Quantitative study of quark-gluon substructure of N* via the Q² dependence of N-N* e.m. transition form factors.
 - Form factors are extracted from meson electro-productions.

This is a main N* program at CLAS12. (R. Gothe et al., JLab E12-09-003; D. Carman et al., a new proposal in preparation)

Y* (= Λ*, Σ*) spectroscopy using Kaon beam (2 of 3)

Current status of Y* spectroscopy (some points may be missed) :

- Much less understood than N* and Δ * baryons.
- PDG lists only Y* mass spectrum defined by the "highly model-dependent" Breit-Wigner mass and width.
- Systematic partial-wave analysis to extract Y* defined as poles of scattering amplitudes was first performed by the KSU group (2013, on-shell K-matrix approach), and then by our group (2014, dynamical approach).

What we have done so far:

- Formulation of coupled-channels equations with $\overline{K}N$, πΣ, πΛ, KΞ, πΣ*(ππΛ), $\overline{K}*N(\pi\overline{K}N)$ channels
- ✓ Simultaneous analysis of available polarized and unpolarized data of K⁻p → KN, πΣ, πΛ, KΞ from the threshold up to W = 2.1 GeV. (~ 17,000 data to fit) (HK, Nakamura, Lee, Sato, arXiv:1407.6839)
- Extraction of Λ* and Σ* mass spectrum defined by poles of scattering amplitudes. (HK, Nakamura, Lee, Sato, in preparation)

Database (mostly comes from 60-70's) HK, Nakamura, Lee, Sato, arXiv:1407.6839 Kinematical region covered					
Reactions	Observables	Number of data	$\chi^2/data$		(up to $W < 2.1$ GeV).
			Model A	Model B	
$K^-p \rightarrow K^-p$	$d\sigma/d\Omega$	3962	4.26	4.18	$d\sigma/d\Omega$: 1465 MeV < W
	P	510	2.26	2.17	<i>P</i> : 1730 MeV < W
	σ	253	2.50	2.72	β , R, A: No data
$K^-p\to \bar{K}^0n$	$d\sigma/d\Omega$	2950	3.79	3.15	$d\sigma/d\Omega$: 1465 MeV < W
	σ	260	1.93	2.98	$\sim P$: No data
	-				β , R, A: No data
$K^- p \to \pi^- \Sigma^+$	$d\sigma/d\Omega$	1792	5.83	5.55	$d\sigma/d\Omega$: 1535 MeV < W
	P	418	2.37	2.22	P : 1535 MeV < W < 1967 MeV <i>B P 4</i> : No data
	$P imes d\sigma/d\Omega$	177	2.21	2.80	
	σ	173	2.75	4.86	p, κ, A . No data
$K^-p \to \pi^0 \Sigma^0$	$d\sigma/d\Omega$	580	6.24	8.15	$d\sigma/dQ : 1535 \text{ MeV} < W < 1763 \text{ MeV}$
	P	196	5.43	5.13	P : 1535 MeV < W < 1696 MeV β, R , A : No data
	$P \times d\sigma/d\Omega$	189	1.26	1.30	
	σ	125	1.90	1.86	
$K^-p\to\pi^+\Sigma^-$	$d = /d \Omega$	1790	2.40	1.00	$d\sigma/d\Omega$: 1536 MeV < W
	$a\sigma/a\Omega$	1/80	3.40	4.06	P : No data
	σ	181	1.37	1.11	β , R, A: No data
$K^- p \to \pi^0 \Lambda$	$d\sigma/d\Omega$	2178	2.68	4.12	$d\sigma/d\Omega$: 1535 MeV < W
	P	693	1.46	1.66	- P : 1535 MeV < W
	$P imes d\sigma/d\Omega$	176	1.43	1.38	$\beta P A$: No data
	σ	207	2.23	2.51	p, κ, A . No data
$K^-p\to K^0\Xi^0$	σ	15	0.63	0.61	
$K^-p\to K^+\Xi^-$	σ	27	1.60	1.52	No data for $d\sigma/d\Omega$, <i>P</i> , β , <i>R</i> , <i>A</i>
Total		16848	3.67	3.81	

Red: Model A, Blue: Model B, Green: KSU [PRC88(2013)035205], Black: PDG(Breit-Wigner)

Predicted spin-rotation angle β

Short summary and remarks (2/3)

- Systematic partial wave analyses to extract Y* defined by poles have been done recently by KSU and our groups.
- The K- p reaction data are still far from "complete".
 (Limitation of kinematical coverage, no spin-rotation parameters,...)
 - Extracted Y* mass spectrum still contains sizable ambiguities !!
- ✓ To eliminate the ambiguities, one needs:
 - Polarization observables

 (*P* in wider kinematical region, spin-rotations β, R, or A)

 Data near the KN threshold

 (Almost no differential cross section data below W = 1.5 GeV)
 - > Data for inelastic reactions: K- p \rightarrow ηΛ, KΞ, $\pi \overline{K}N$, $\pi \pi \Lambda$,...

Applications of ANL-Osaka DCC approach to $p(\pi, \rho \text{ or } K^*)X$ with high-momentum pion beam (3 of 3)

- Forward p(π,ρ)X & p(π, K*)X reactions with high-momentum pions (Ishikawa-san's talk at RCNP May 1st, 2012)
 - New opportunity of light-quark baryon spectroscopy using diffractive processes

 $(\rightarrow$ another useful source for addressing the KN subthreshold region!!)

May be able to be used for determining N-N* and N-Y* transition form factors by axial currents (from virtual-πNN*, virtual-KNY* vertices + PCAC).

> π propagator (Reggeized) [e.g., Guidal et al, NPA627(1997)645]:

$$D_{\rm ex} = \left(\frac{s}{s_0}\right)^{\alpha(t)} \frac{\pi \alpha'}{\sin(\pi \alpha(t))} \frac{S + e^{-i\pi\alpha(t)}}{2} \frac{1}{\Gamma(1 + \alpha(t))}$$

Contributions of X = ηN , K Λ , K Σ are much smaller than X = πN , $\pi\pi N$.

Short summary and remarks (3/3)

- An attempt to using forward p(π,ρ)X for light-quark baryon spectroscopy is underway within our DCC model.
- Application to p(π,K*)X will also be possible using our DCC model for K- p reactions !!