

Heavy meson molecules in heavy quark limit

Shunsuke Ohkoda

Tokyo Institute of Technology

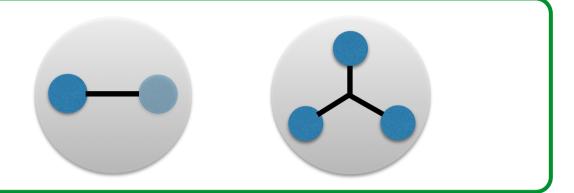
Outline

- Introduction/Motivation
- Heavy quark spin symmetry
- Spin structures of heavy meson molecules
- Spin degeneracy of heavy meson molecules
- Summary

Exotic Hadrons

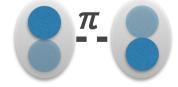
We know

meson and baryons



QCD also allows

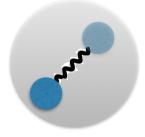
Molecules(DN, BN)



Molecules (DD, BB)

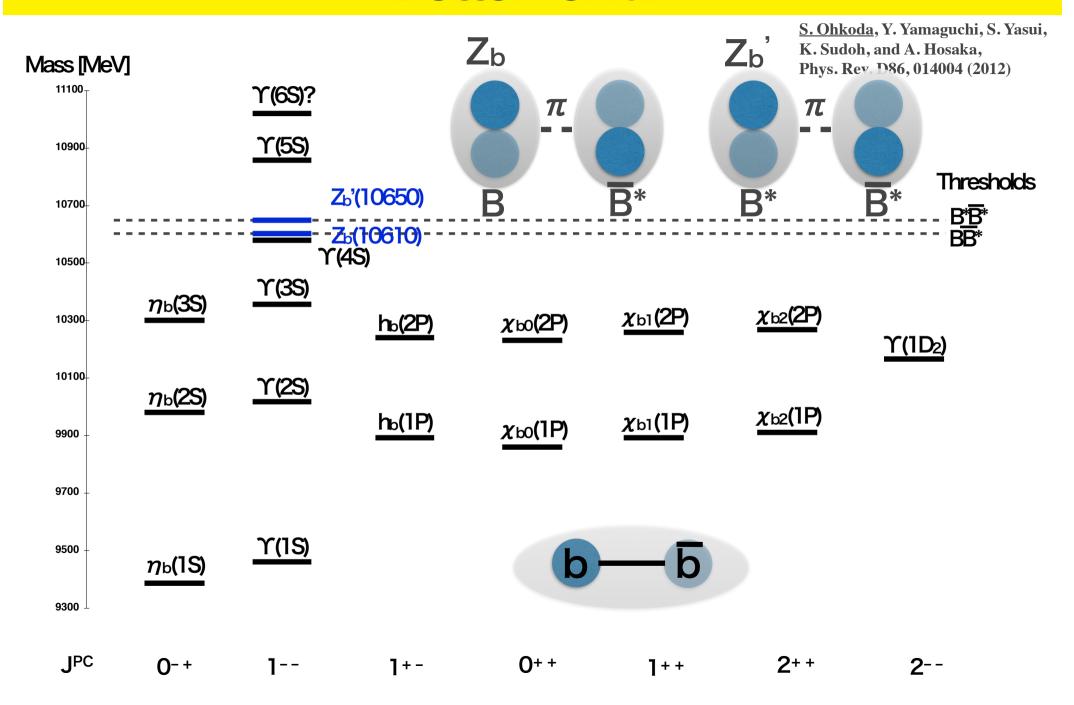
Tetra quark

glueball



hybrid

Bottomonium



$Z_b(10610)$ and $Z_b(10650)$

Exotic quantum numbers

- $VIG(J^{P})=1+(1+)$
- $\checkmark \Upsilon(5S) \rightarrow Z_b + \pi^- \rightarrow \Upsilon(1,2,3S) \pi^+ \pi^-$
- ✓Z_b's are "genuine" exotic states

Exotic masses

- ✓Z_b's are twin resonances with small mass splittings, ~ 45 MeV
- \checkmark Z_b's are very close to the respective thresholds, B\overline{B}* and B*\overline{B}*

Exotic decays

 \checkmark The decays of Υ (5S)→Z_bπ→h_b(mP)ππ are not suppressed although it needs spin flip

A. Bondar, et al, PRD84 054010 (2011)

S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

Z_b are B^(*)B̄^(*)molecules?

Heavy quark symmetry

Heavy quark symmetry

✓ In heavy quark limit, spin-spin interactions are suppressed

— Heavy quark spin symmetry

$$Q_v(x) = e^{im_Q v \cdot x} \frac{1 + \psi}{2} Q(x)$$

$$\mathcal{L}_{\mathrm{HQ}} = \bar{Q}(i\not\!\!D - m_{\mathrm{Q}})Q$$

$$\mathcal{L}_{\text{HQET}} = \bar{Q}_v v \cdot iDQ_v + \bar{Q}_v \frac{(iD_\perp)^2}{2m_Q} Q_v - c(\mu) g_s \bar{Q}_v \frac{\sigma_{\mu\nu} G^{\mu\nu}}{4m_Q} Q_v + \mathcal{O}(1/m_Q^2).$$

New conserved quantity appears in heavy quark limit

--- light spin degree of freedom

$$S_I = J - S_H$$

S_I: Light spin

J: Total angular momentum

S_H: Heavy quark spin

M. B. Voloshin, PRD85, 034024 (2012)

M. B. Wise.

PRD45, 2188 (1992)

S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, PRD86, 117502 (2012).

Y. Yasui, K. Sudoh, Y. Yamaguchi,

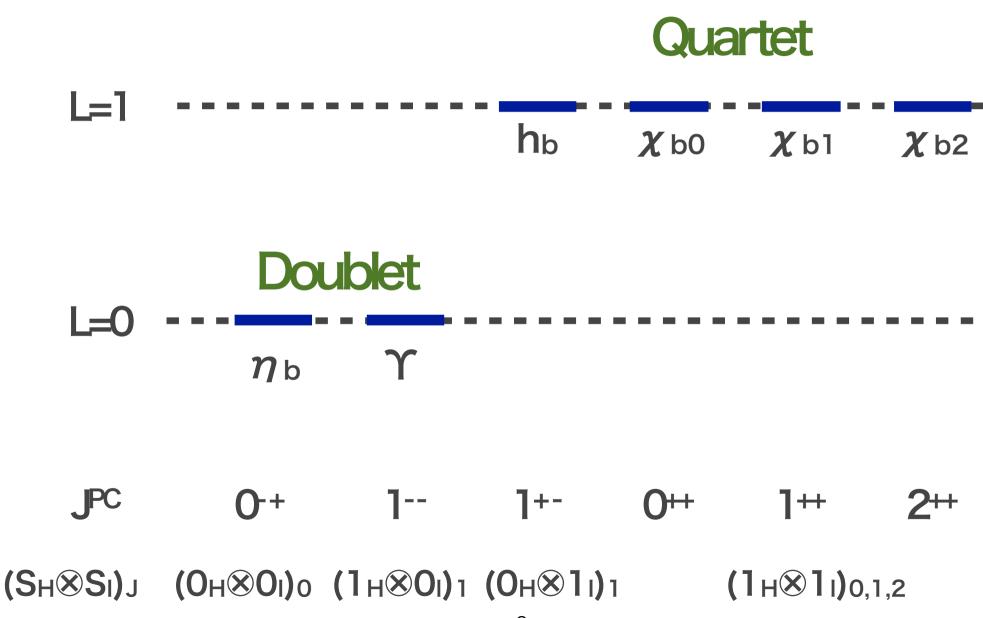
S. Ohkoda, A. Hosaka and T. Hyodo, Phys. Lett. B727 185-189

(2013).

Spin structures

✓ Heavy hadrons are classified with spin structures,(SH ⊗ SI)J.

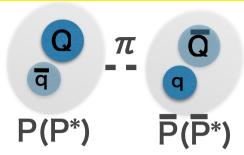
Spin degeneracy of heavy quarkonium



Spin structures in heavy meson molecules

Purpose

We study P^(*) P^(*) molecules in the HQ limit



- This study clarify the 1/mq effects in charm/bottom region
- This study shows the spin partners
- Spin selection rules provide the information about the properties of decays and productions

This study

- We focus on $I^G(J^P)=1+(1+)$, which corresponds to Z_b channel
- \checkmark What are the spin partners for Z_b ?

Spin structures

 $S_1 = S_{00\overline{0}} + L (\neq 0^{+-}, 1^{-+}, 2^{+-}, J < 2)$ $G(J^P)=1+(1+):Z_b$

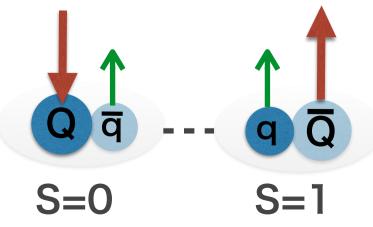
$$\begin{pmatrix} \left| \frac{1}{\sqrt{2}} (P\bar{P}^* - P^*\bar{P})(^3S_1) \right\rangle \\ \left| \frac{1}{\sqrt{2}} (P\bar{P}^* - P^*\bar{P})(^3D_1) \right\rangle \\ \left| P^*\bar{P}^*(^3S_1) \right\rangle \\ \left| P^*\bar{P}^*(^3D_1) \right\rangle \end{pmatrix} = U_{1^{+-}} \begin{pmatrix} \left| 0_H, 1_l[1_q, 0_L]; 1 \right\rangle \\ \left| 0_H, 1_l[1_q, 2_L]; 1 \right\rangle \\ \left| 1_H, 0_l[0_q, 0_L]; 1 \right\rangle \\ \left| 1_H, 2_l[0_q, 2_L]; 1 \right\rangle \end{pmatrix}$$

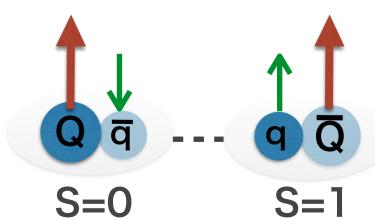
$$(1_H \otimes 0_l)_1$$

$$(1_H \otimes 2_l)_1$$

12

$$\left|\frac{1}{\sqrt{2}}(P\bar{P}^* - P^*\bar{P})(^3S_1)\right\rangle = \frac{1}{\sqrt{2}}\left|0_H \otimes 1_l\right\rangle_1 + \frac{1}{\sqrt{2}}\left|1_H \otimes 0_l\right\rangle_1$$





Spin partners

Spin partners

$$(0_H^{-+}\otimes 1_l^{--})_{1^{+-}}$$

$$(0_{H}^{-+}\otimes 1_{l}^{--})_{1^{+-}} \qquad (1_{H}^{--}\otimes 1_{l}^{--})_{0^{++}}, (1_{H}^{--}\otimes 1_{l}^{--})_{1^{++}}, (1_{H}^{--}\otimes 1_{l}^{--})_{2^{++}}$$

$$1^{+-}$$
 $(1_H^{--} \otimes 0_l^{-+})_{1^{+-}}$

$$(0_H^{-+} \otimes 0_l^{-+})_{0^{++}}$$
 doublet!

$$(1_H^{--}\otimes 2_l^{-+})_{1^{+-}}$$

$$(1_H^{--} \otimes 2_l^{-+})_{1^{+-}}$$
 $(0_H^{-+} \otimes 2_l^{-+})_{2^{++}} (1_H^{--} \otimes 2_l^{-+})_{2^{+-}}, (1_H^{--} \otimes 2_l^{-+})_{3^{+-}}$

- The appearance of spin degeneracies is depend on dynamics
- We need some sort of the effective model

Spin degeneracy with one pion exchange potential model

OPEP model

\checkmark Interactions for B(*) and π

$$\mathcal{L}_{I} = ig \operatorname{Tr}[H_{b} \gamma_{\mu} \gamma_{5} A_{ba}^{\mu} H_{a}]$$

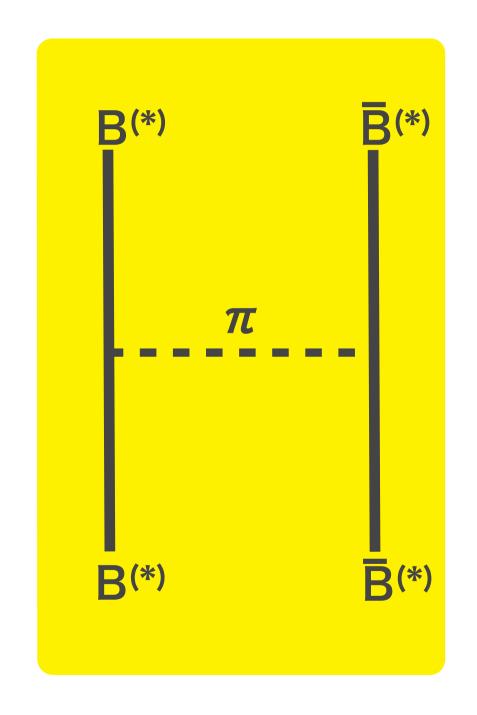
$$H_a = \left(\frac{1+\psi}{2}\right) \left[M_a^{\mu} \gamma_{\mu} - M_a \gamma_5\right]$$

✓ Coupled channels for Z_b

$$\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})(^3S_1), \frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})(^3D_1),$$

$$B^*\bar{B}^*(^3S_1), B^*\bar{B}^*(^3D_1)$$

We obtain the Hamiltonians of B^(*) B̄^(*) states



S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

$$\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})(^3S_1), \frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})(^3D_1), B^*\bar{B}^*(^3S_1), B^*\bar{B}^*(^3D_1)$$

$$H_{1^{+-}} = \begin{pmatrix} K_0 + C_I & -\sqrt{2}T_I & -2C_I & -\sqrt{2}T_I \\ -\sqrt{2}T_I & K_2 + C_I + T_I & -\sqrt{2}T_I & -2C_I + T_I \\ -2C_I & -\sqrt{2}T_I & K_0 + C_I & -\sqrt{2}T_I \end{pmatrix} \quad \begin{array}{c} C : \text{ Center force} \\ T : \text{ Tensor force} \\ T : \text{ Tensor force} \\ T : \text{ Tensor force} \\ T : Tensor force \\ T : Te$$

1-(1++):
$$\frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) (^3S_1), \frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) (^3D_1), \mathbf{B}^*\bar{\mathbf{B}}^* (^5D_1)$$

$$H_{1^{++}} = \begin{pmatrix} K_0 - C_I & \sqrt{2}T_I & -\sqrt{6}T_I \\ \sqrt{2}T_I & K_2 - C_I - T_I & -\sqrt{3}T_I \\ -\sqrt{6}T_I & -\sqrt{3}T_I & K_2 - C_I + T_I \end{pmatrix}$$

OPEP model in HQ imit

Potential model

S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

 $H_{J^{PC}}^{HQ}$: Hamiltonian in HQ basis

$$H_{1+-}^{HQ} = U_{1+-}^{-1} H_{1+-} U_{1+-}$$

$$= \begin{pmatrix} \begin{matrix} K_0 - C & -2\sqrt{2}T & 0 & 0 \\ -2\sqrt{2}T & K_2 - C + 2T & 0 & 0 \\ \hline 0 & 0 & K_0 + 3C & 0 \\ \hline 0 & 0 & 0 & K_2 + 3C \end{pmatrix}$$
 (OH \otimes 1₁)1 (1H \otimes O₁)1 (1H \otimes 2₁)1

$$(1_H \otimes 0_I)_1$$

 $(1_H \otimes 2_I)_1$

$$= \begin{pmatrix} H_{1^{+-}}^{(0,1)} & 0 & 0 \\ \hline 0 & H_{1^{+-}}^{(1,0)} & 0 \\ \hline 0 & 0 & H_{1^{+-}}^{(1,2)} \end{pmatrix} \rightarrow \begin{array}{c} \textbf{Diagonalized} \\ \textbf{Hamiltonian:} & H_{JPC}^{(S_Q,S_l)} \\ \end{array}$$

→ Diagonalized Hamiltonian :
$$H_{JPC}^{(S_Q,S_l)}$$

$$H_{1++}^{HQ} = \begin{pmatrix} K_0 - C & -2\sqrt{2}T & 0 \\ -2\sqrt{2}T & K_2 - C + 2T & 0 \\ 0 & 0 & K_2 - C - 2T \end{pmatrix}$$

$$= \left(\begin{array}{c|c} H_{1^{++}}^{(1,1)} & 0\\ \hline 0 & H_{1^{++}}^{(1,2)} \end{array}\right)$$

$$H_{1^{+-}}^{(0,1)} = H_{0^{++}}^{(1,1)} = H_{1^{++}}^{(1,1)} = H_{2^{++}}^{(1,1)}$$

Meson molecules in HQ limit

✓ Mass spectrum

- **HQS** quartet: $H_{1+-}^{(0,1)} = H_{0++}^{(1,1)} = H_{1++}^{(1,1)} = H_{2++}^{(1,1)}$
- They are lowest bound state of P^(*) P̄^(*) states

₩Wave functions

- Spin structures restrict the wave functions
- **Ex)** 1+(1+-): $f(P\bar{P}^*(^3S_1))$: $f(P^*\bar{P}^*(^3S_1))$ 1 : 1.

Decay properties

Spin selection rules lead the decay properties

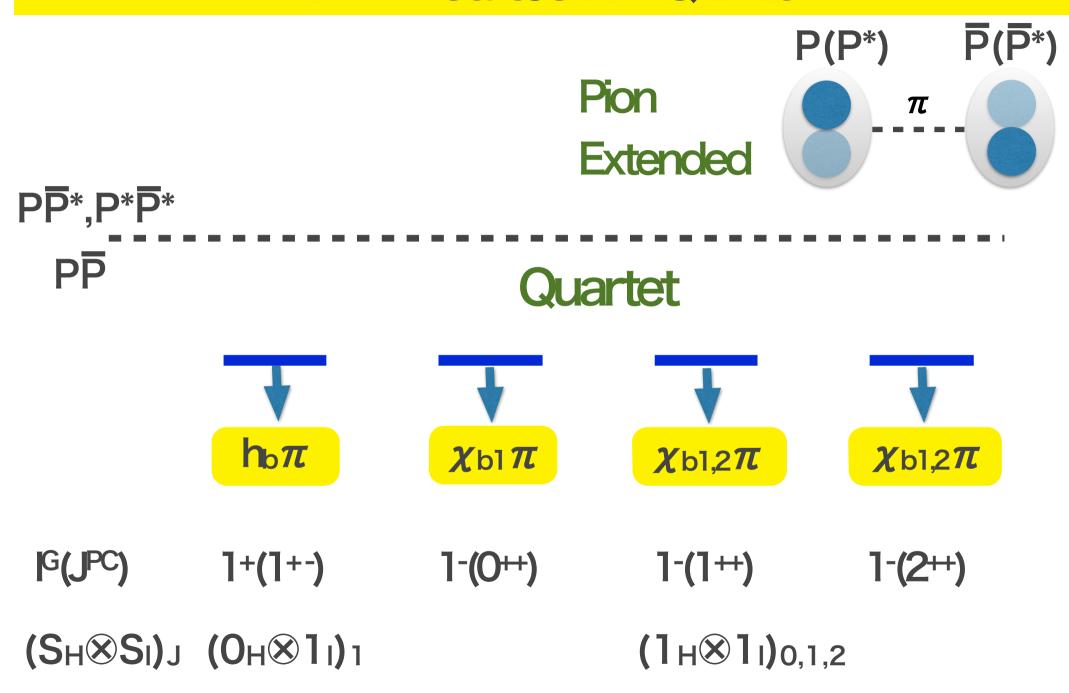
$$\Gamma(Z_b^0 \to \chi_{b0} \gamma) : \Gamma(Z_b^0 \to \chi_{b1} \gamma) : \Gamma(Z_b^0 \to \chi_{b2} \gamma)$$

$$1 : 3 : 5$$

$$\Gamma(H_{1^{++}}^{(1,1)} \to \chi_{b0}\pi) : \Gamma(H_{1^{++}}^{(1,1)} \to \chi_{b1}\pi) : \Gamma(H_{1^{++}}^{(1,1)} \to \chi_{b2}\pi)$$

$$4 : 3 : 5$$

P^(*) P^(*) states in HQ limit



P^(*)P^(*) states in HQ limit

B^(*)B̄^(*) states

S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

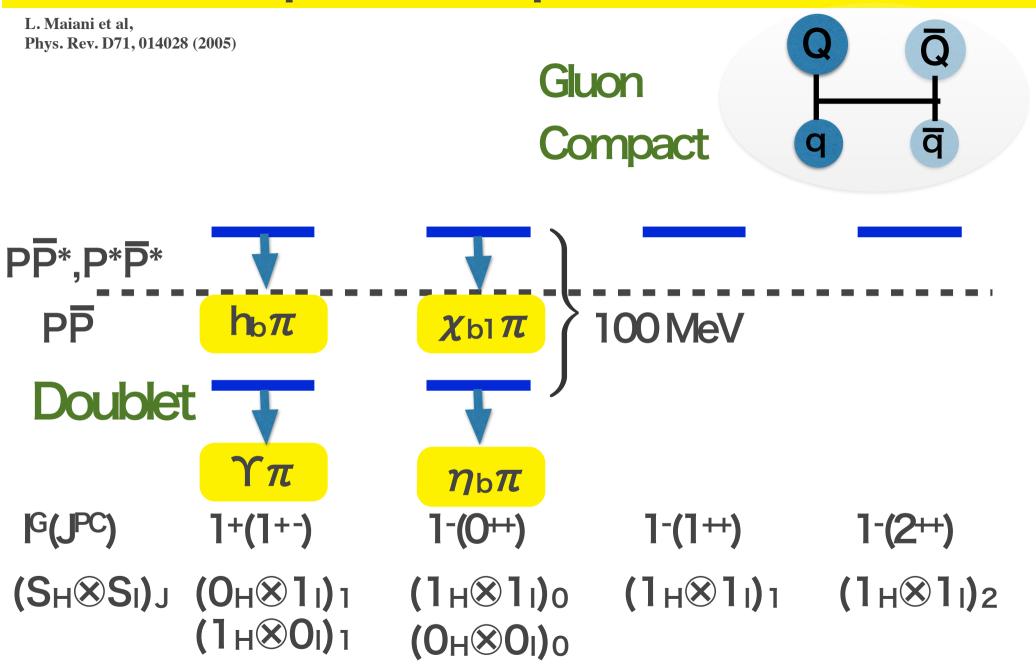
$$IG(JPC)$$
 1+(1+-)

Mixing ratio of each channel

(SH⊗SI)J	(O _H ⊗1ı)1	(1 H⊗0ı)1	(1н⊗2ı)ı
P(*) P(*)	100%	0%	0%
B(*)B(*)	84%	15%	1%
Decays	h _o π	Υπ	$(\Upsilon\pi)$ D-wave

- $(1_H \otimes 0_1)_1$ component allows the decays, $Z_b \rightarrow \Upsilon(nS)\pi$.

Diquark-anticliquaks in HQ limit



Summary

- We investigate the P(*) P(*) states in HQ limit
- The spin degeneracy is related with the inner structures of the heavy hadrons
- \bigcirc Spin partners of Z_b are possible to be observed in future experiments
- Spin structures give the decay properties

Y. Yasui, K. Sudoh, Y. Yamaguchi, <u>S. Ohkoda</u>, A. Hosaka and T. Hyodo, Phys. Lett. B727 185-189 (2013).