Gamma spectroscopy of hypernuclei
--E13 and beyond--

H. Tamura
Tohoku University

1. Introduction
2. E13: purposes and present status
3. Beyond E13
4. Summary
1. Introduction
Hyperball 1998~

Hypernuclear γ-ray data

7Li ($\pi^+, K^+\gamma$) KEK E419

9Be ($K^+, \pi^-\gamma$) BNL E930('98)

10B ($K^+, \pi^-\gamma$) BNL E930('01)

12C ($\pi^+, K^+\gamma$) KEK E566

13C ($K^+, \pi^-\gamma$) BNL E929 (Nal)

16O ($K^+, \pi^-\gamma$) BNL E930('01)

6Li

7Li

9Be

10B

12C

13C

16O

References:

PRL 84 (2000) 5963
PRL 86 (2001) 1982
PLB 579 (2004) 258
PRC 73 (2006) 012501
PRL 88 (2002) 082501
NPA 754 (2005) 58c

NPA 754 (2005) 58c
EPJ A33 (2007) 243
PRL 66 (2001) 4255
PRC 65 (2002) 034607
PRC 77 (2008) 054315
PRL 93 (2004) 232501
EPJ A33 (2007) 247
\[\Delta N \] spin-dependent interaction strengths determined:

- Spin-spin: \(\Delta = 0.33 \) MeV (\(A > 10 \)), 0.42 MeV (\(A < 10 \))
- \(\Lambda \) spin-orbit: \(S_\Lambda = -0.01 \) MeV
- \(N \) spin-orbit: \(S_N = -0.4 \) MeV
- Tensor: \(T = 0.03 \) MeV

- Almost all these p-shell levels are reproduced by this parameter set. (D.J. Millener)

- \(\Delta N - \Sigma N \) coupling force from NSC models looks good.

- Feedback to BB interaction models

\[\text{NPA 754 (2005) 58c} \quad \text{EPJ A33 (2007) 243} \]
An example of $^{12}\text{C} (\pi^+, K^+\gamma)^{12}_\Lambda\text{C}$ at KEK

Reaction angle $\theta_{\pi K}$

Spin-flip production

$\Delta L = 1$

non-spin-flip production

Hosomi et al. To be published

Bound excited states w/o Doppler corr.

Bound excited states w/ Doppler corr.

Unbound region
Level scheme of $^{12}_\Lambda C$ (Updated Analysis)

$^{12}_C(e,e'K^+)^{12}_\Lambda B$ @ JLab Hall C

$^{12}_C(e,e'K^+)^{12}_\Lambda C$ @ KEK-PS

$^{12}_C \left(\pi^+,K^+\right) ^{12}_\Lambda C$

$^{12}_C(p+p),K^+ \rightarrow ^{12}_\Lambda C$

$^{12}_C(p+p),K^+ \rightarrow ^{12}_\Lambda C$

This precise $^{12}_\Lambda C$ level scheme is useful for testing new reactions and apparatus.
2. E13: Purposes and Present Status
Ge cooled down to ~70K by pulse-tube refrigerator (c.f. 92K w/LN2)

Fast background suppressor made of PWO

Eff. ~ 6% @1 MeV with 32 Ge(re=60%)
Hyperball-J
installed in front of SKS magnet at K1.8
Hyperball-J performance in beam

Ge Adc (added for 16 detectors)

Measured range: 0.1 - 8 MeV

<table>
<thead>
<tr>
<th>Energy [keV]</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>197.1 keV</td>
<td>19</td>
</tr>
<tr>
<td>718.4 keV</td>
<td>10</td>
</tr>
<tr>
<td>937 keV</td>
<td>18</td>
</tr>
<tr>
<td>870.7 keV</td>
<td>17</td>
</tr>
</tbody>
</table>

FWHM: 3.8 ± 0.3 keV
FWHM: 4.3 ± 0.5 keV

CF$_2$(20 g/cm2) target
8 hours

Red: γ-rays from beam reaction on target nuclei

19F(197.1 keV)
10B(718.4 keV)
18F(937 keV)
17O(870.7 keV)

74Ge
27Al or 56Fe

$e^-(511$ keV)
Purpose of E13 experiment

Approved as DAY1, Second priority

ΛN interaction

1. **Charge symmetry breaking in ΛN interaction**

 $^4_\Lambda$He: Confirm (or deny) CSB effects suggested by old data

 1.5, 1.8 GeV/c (K^-,π^-) @K1.8

2. **Radial dependence of ΛN interaction**

 $^{19}_\Lambda$F: The first sd-shell hypernuclei

 1.8 GeV/c (K^-,π^-) @K1.8

3. **Study ΛN–ΣN coupling force**

 $^{10}_\Lambda$B and $^{11}_\Lambda$B: Inconsistency in p-shell data.

 1.1 GeV/c (K^-,π^-) @K1.1

4. **g-factor of Λ in nucleus**

 $^7_\Lambda$Li: g_Λ measurement in ~3% accuracy

 1.1 GeV/c (K^-,π^-) @K1.1
Experimental approaches to Charge Symmetry Breaking puzzle in A=4

Origin: $\Delta N-\Sigma N$ coupling? But theoretically difficult

Will be measured via (e,eK^+) at Jlab

Will be measured by Ge at J-PARC

Old NaI data

Experimental confirmation of CSB J-PARC E13 (+ more)

- $^4\text{He}(K^-,\pi^-)\ ^4\Lambda\text{He}(1^+\rightarrow0^+)$
- $^4\text{He}(K^-,\pi^0\gamma)\ ^4\Lambda\text{H}(1^+\rightarrow0^+)$
 with a few keV accuracy

$^4\Lambda\text{He}

$^4\Lambda\text{H}

$^3\text{H}

$^3\text{He}

Old emulsion data

Being measured at Maniz

Difficult by counter experiments
Experimental approaches to Charge Symmetry Breaking puzzle in A=4

Old emulsion data

Will be measured by Ge at J-PARC

4^He + p -> ... Being measured at Maniz

Will be measured via (e,eK^- + p) at Jlab

Experimental confirmation of CSB

J-PARC E13 (+ more)

- 4^He(K^-,π^-γ) 4^ΛHe(1^+-→0^+)
- 4^He (K^-,π^0γ) 4^ΛH(1^+-→0^+)

Data with a few keV accuracy

- E_γ[4^ΛHe] ≠ E_γ[4^ΛH]:
 - Clear evidence of CSB.
 - Spin dependence of CSB int.
- E_γ[4^ΛHe] = E_γ[4^ΛH]:
 - Strongly suggests CSB does not exist

Bedjidian et al, PLB 83 (1979) 252

- Origin: LN-SN coupling?
- But theoretically difficult
- Not a significant peak

\[E_γ[4^ΛHe] = E_γ[4^ΛH] \]:
- Clear evidence of CSB.
- Spin dependence of CSB int.

\[E_γ[4^ΛHe] ≠ E_γ[4^ΛH] \]:
- Strongly suggests CSB does not exist

by counter experiments
$^{19}_\Lambda F$ spectroscopy
The first study of sd-shell hypernuclei

(1) ΔN spin-spin interaction in sd shell
(2) spin-flip $B(M1) \rightarrow g_\Lambda$ (byproduct)
(3) shrinkage and N-spin-orbit force (byproduct)
$^{19}_\Lambda F$ spectroscopy
The first study of sd-shell hypernuclei

(1) ΔN spin-spin interaction in sd shell
(2) spin-flip $B(M1) \rightarrow g_\Lambda$ (byproduct)

(3) shrinkage and N-spin-orbit force (byproduct)

(4) Cross check of (1)

$^{18}_\Lambda O + p$

^{16}O core

Calc. (Millener)
A-dependence of ΛN spin-spin int. strength

$=>$ Information on wave functions and interaction range
$=>$ confirm short-range nature of ΛN int.

\[r(s_\Lambda - d_N) > r(s_\Lambda - p_N) > r(s_\Lambda - s_N) \]
Magnetic moment of a Λ in a nucleus

Baryon magnetic moment in nucleus:
affected by partial restoration of chiral symmetry?
-> Origin of baryon spin and mass
Λ, free from Pauli effect, is a good probe.

Direct measurement is difficult ($\tau \sim 0.1-0.2$ ns)

Λ-spin-flip M1 transition: $B(M1) \rightarrow g_\Lambda$

$B(M1) = (2J_{up} + 1)^{-1} |\langle \Psi_{low} \parallel \mu \parallel \Psi_{up} \rangle|^2$

$= (2J_{up} + 1)^{-1} |\langle \Psi_{\Lambda \downarrow} \psi_c \parallel \mu \parallel \Psi_{\Lambda \uparrow} \psi_c \rangle|^2$

$\mu = g_c J_c + g_\Lambda J_\Lambda = g_c J + (g_\Lambda - g_c) J_\Lambda$

$= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_c + 1} (g_\Lambda - g_c)^2 \left[\mu_N^2 \right]$

~100% Doppler Shift Attenuation Method

$\Gamma = BR / \tau = \frac{16\pi \cdot 3}{9} E_\gamma^3 B(M1)$
Preliminary data on g_Λ

BNL E930 (M. Ukai)

$g_\Lambda = -1.1 \pm 0.6 \mu_N$

τ from DSAM

$^{10}\text{B} (K^-, \pi^-) ^{10}_\Lambda \text{B}^* \rightarrow ^{7}_\Lambda \text{Li}^* + ^3\text{He}$

KEK E566 (Y. Ma)

$g_\Lambda > -1.76 \mu_N$

τ from DSAM

$g_\Lambda = -1.04 \pm 0.41 \mu_N$

$^{12}\text{C} (K^-, \pi^-) ^{12}_\Lambda \text{C}^* \rightarrow ^{11}_\Lambda \text{B}^* + p$

- Yield ratio for $[2^- \rightarrow 1^-] / [1^- \rightarrow 2^-]$ γ-rays
 -> $\text{Br}(2^- \rightarrow 1^-) = 0.19 \pm 0.12$ (80% of 2^- weakly decays)

- Weak decay rate of 2^- and 1^- are assumed to be the same, $\Gamma_{\text{weak}} = (\text{lifetime } 230.7 \pm 6.3 \text{ ps})^{-1}$

=> $\Gamma_{M1} = \text{Br} / (1 - \text{Br}) \Gamma_{\text{weak}}$

$\Leftrightarrow g_\Lambda(\text{free}) = -1.226 \mu_N$
Preliminary data on B(M1) in $^{7}_\Lambda$Li (BNL E930)

10B (K^-, π^-) $^{10}_\Lambda B^*$, $^{10}_\Lambda B^*(3^+) \rightarrow ^7_\Lambda Li^*(3/2^+) + ^3$He indirect population

g_L in nucleus - first data of $g_\Lambda = 1.1^{+0.4}_{-0.6}$ μ_N

First data of g_Λ in nucleus - precise (5%) B(M1) measurement of $^{7}_\Lambda$Li at J-PARC E13

Preliminary simulation

$\tau = 0.58^{+0.38}_{-0.20}$ ps

BR(M1) = 100%

$B(M1) = 0.30^{+0.12}_{-0.16}$ [μ_N^2]

$\tau << 0.1$ ps

$\tau = 1.5$ ps

Stopping time ~ 2 ps

Counts/keV

E_γ [keV]

$^{7}_\Lambda$Li(692)

10B(718)

72Ge(595)

10B(595)

72Ge(683)

$^{7}_\Lambda$Li(692)

10B(718)

72Ge(595)

$^{7}_\Lambda$Li(692)

10B(718)

72Ge(595)
Preliminary data on B(M1) in $^{7}_Λ$Li (BNL E930)

10B (K^-, π^-) $^{10}_Λ B^*$, $^{10}_Λ B^*(3^+) \rightarrow ^7_Λ Li^*(3/2^+) + ^3$He indirect population

-$\Delta \tau/\tau = 5.6\%$

Stat. error $\frac{|g_Λ-g_c|}{|g_Λ-g_c|} \sim 3\%$

$\tau = 0.5$ ps

$\tau = 1.5$ ps

$|g_Λ-g_c|/|g_Λ-g_c| \sim 3\%$

$\Delta |g_Λ-g_c|/|g_Λ-g_c| = 5.6\%$

$E13 \ (2^{nd}): \ Simulation$

$Nucl.Phys. \ A881 \ (2012) \ 310$

$\tau = 0.5$ ps

$\tau = 1.5$ ps

$|g_Λ-g_c|/|g_Λ-g_c| \sim 3\%$

$\Delta |g_Λ-g_c|/|g_Λ-g_c| = 5.6\%$

$E13 \ (2^{nd}): \ Simulation$

$Nucl.Phys. \ A881 \ (2012) \ 310$

$\tau = 0.5$ ps

$\tau = 1.5$ ps

$|g_Λ-g_c|/|g_Λ-g_c| \sim 3\%$

$\Delta |g_Λ-g_c|/|g_Λ-g_c| = 5.6\%$

$E13 \ (2^{nd}): \ Simulation$

$Nucl.Phys. \ A881 \ (2012) \ 310$
3. Beyond E13
Future Plans

- Systematic study of $g_\Lambda (^{7}_\Lambda Li, ^{12}_\Lambda C, ^{19}_\Lambda F, \ldots)$
 - ρ dependence -> chiral symmetry restoration
 - Isospin dependence -> effect of Σ mixing

Doppler shift attenuation method
 + Weak-gamma coincidence method

- Impurity effects in p and sd shell hypernuclei
 - Shrinkage/ deformation change ($^{9}_\Lambda Be, ^{13}_\Lambda C, ^{20}_\Lambda Ne, \ldots$)
 - Disappearance of neutron halo ($^{7}_\Lambda He$)
 - Study structure of normal nuclei using a Λ
 Triaxial deformation ($^{25}_\Lambda Mg$), α-cluster gas ($^{12}_\Lambda C(0^+)_2 + \Lambda$)

- Λ’s single particle energies for a wide range of A
 - $1\hbar\omega$ energy
 - LS splitting
 from $E1$: ($p_{1/2}^\Lambda \rightarrow s^\Lambda$, $p_{3/2}^\Lambda \rightarrow s^\Lambda$) for a wide mass range
Λ's single particle energy

B_Λ (MeV)

A Binding Energy

A Binding Energy

(E1 γ-ray error ~ 1 keV

LS splitting

Density dependence of ΛN interaction

\rightarrow EOS and hyperon puzzle

(Y.Yamamoto's talk)

Origin of LS splitting

(2B-LS force, tensor force, many body effects)

$(K^-,\pi^-), (\pi^+,K^+) \rightarrow \Delta E \sim 200$ keV @J-PARC Ext-HH

$(e,e'K^+) \Delta E \sim 500$ keV, syst.err. ~ 100 keV @Jlab Hall-A (HKS+HRS)
E1 measurement for heavy hypernuclei

\(\gamma \)-spectroscopy of \(^{208}_\Lambda \text{Pb} \)

H. Tamura et al., J-PARC LOI

(K\(^-\),\(\pi^-\)) at 1.8 GeV/c
10 g target
3\times10^6 K^-/4s (~270 kW)

500 h
\(p3/2(5^-) \) ~500 events
\(p1/2(7^-) \) ~200 events
\(p3/2(7^-) \) ~130 events

Higher intensity is necessary!
4. Summary

- E13-1st will study $^4_\Lambda\text{He}$ and $^{19}_\Lambda\text{F}$ for CSB and ΛN interaction in sd-shell hypernucleus.

- Hyperball-J is ready and commissioning has been done.

- E13-2nd will study g_Λ in nucleus from B(M1) measurement.

- Beyond E13, we plan E1 ($p_\Lambda \rightarrow s_\Lambda$) measurement for heavy hypernuclei, as well as systematic study of g_Λ and impurity effects.