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Interpretation of the Form factors

Electromagnetic form factors

Non-Relativistic picture of the EM form factors

Schroedinger Eq. & Wave functions

Charge & Magnetisation Densities

3-D Fourier Transform
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Interpretation of the EMFFs

Traditional interpretation of the nucleon form factors

F1(Q
2) =

Z
d

3
xe

iQ·x
⇢(r) ⇢(r) =

X
 †(r) (r)

However, the initial and final momenta are different in a relativistic case. 
Thus, the initial and final wave functions are different.

Probability interpretation is wrong in a relativistic case!

We need a correct interpretation of the form factors

G.A. Miller, PRL 99, 112001 (2007)

Belitsky & Radyushkin, Phys.Rept. 418, 1 (2005)
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Interpretation of the EMFFs

Form factors

Lorentz invariant: independent of any observer.

Infinite momentum framework

Modern understanding of the form factors

GPDs

⇢1(b) =
X

q

e

2
q

Z
dxfq�q̄(x, b)

F (q2) =

Z
d2beiq·b⇢(b)

Transverse Charge densities ⇢(b)
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Hadron Tomography
2 Generalised Parton Distributions
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Figure 2.1 | A simplified sketch of the different phenomenological observables and their
interpretation in the infinite momentum frame: a | The form factor as a charge density in
the perpendicular plane (after a Fourier transform, Sec. 1.2). b | A probabilistic interpre-
tation for GPDs in the case of vanishing longitudinal momentum transfer, ξ = 0, with a
resolution ∼ 1/Q2. c | A parton distribution for the forward momentum case (Sec. 1.3).
For a detailed explanation see text. [Pictures inspired by [17]]

(conventionally the z-direction) they can be seen as Lorentz contracted ‘discs’ rather than
spherical objects.1 We will later argue that this infinite momentum frame is necessary for
the GPDs. For the moment, we thus think of a two-dimensional distribution with respect
to b⊥ in the transverse plane, sketched in Fig. 2.1.a. The z-direction is also suppressed in
favour of the fractional (longitudinal) momentum x of the partons.

The second process led to parton distribution functions (PDFs) q(x) with the momentum
fraction x carried by the parton. They give the probability of finding the parton q with
this momentum inside the hadron and they are sketched in Fig. 2.1.c. One can also give a
resolution ∼ 1/Q2 that can be resolved inside the hadron. So for different Q2 partons of
a ‘different size’ can be probed, consequently the parton content of the hadron changes.

To achieve a deeper understanding of the distribution of the quarks inside the hadron, it
would be nice to combine the two cases, i.e. know the distribution in the transverse plane
for quarks with a given momentum fraction. This is exactly one interpretation of GPDs.
During the discussion of the form factor and the PDFs, we already mentioned the similarity
of the matrix elements appearing in Eqs. (1.5) and (1.10). The initial and final states of
the two processes differed only in their momenta (after applying the optical theorem).
There are indeed processes with different asymptotic states that can be related to the two
aforementioned, thus coining the term generalised distributions. We will later consider
the problems arising from the complete freedom of the two momenta. For the moment,
note that a density interpretation is possible if the longitudinal momentum transfer ξ
vanishes. A Fourier transform of the remaining transverse momentum transfer then yields

1Neglecting relativistic corrections, this would not be necessary for the form factor where we have elastic
scattering with momenta down to zero.
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D. Brömmel, Dissertation (Regensburg U.)

Transverse densities  
of Form factors GPDs Structure functions

Momentum fraction
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Generalised Parton Distributions
Probes are unknown for Tensor form factors 
and the Energy-Momentum Tensor form factors!

Pion

Pion
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Generalised Parton Distributions
Probes are unknown for Tensor form factors 
and the Energy-Momentum Tensor form factors!

Form factors as Mellin moments of the GPDs

Pion

Pion



Experimentally, we know about the pion 

• Pion Mass = 139.57 MeV 
• Pion Spin = 0

What we know about the Pion

Theoretically 

• pseudo-Goldstone boson 
• The lowest-lying meson  

(1 q + 1anti-q + sea quarks + gluons + …)

The structure of the pion is still not trivial!
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The spin structure of the Pion 

x

y

zb�

Vector & Tensor Form factors of the pion 

u

d̄

Pion: Spin S=0

Internal spin structure of the pion

h⇡(p0)| ̄�3�5 |⇡(p)i = 0

Longitudinal spin structure is trivial.

What about the transversely polarized quarks 
inside a pion?
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The spin distribution of the quark 

Spin probability densities in the transverse plane 
An0: Vector densities of  the pion,      Bn0: Tensor densities of the pion 
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The spin distribution of the quark 

Spin probability densities in the transverse plane 
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The spin distribution of the quark 

Spin probability densities in the transverse plane 
An0: Vector densities of  the pion,      Bn0: Tensor densities of the pion 

Vector and Tensor form factors of the pion

h⇡(pf )| †�µQ̂ |⇡(pi)i = (pi + pf )A10(q
2)



µ � 600MeV� � 0.3 fm, R � 1 fm

Dµ = @µ � i�µVµ

Nonlocal chiral quark model

The nonlocal chiral quark model from the instanton vacuum

• Fully relativistically field theoretic model.
• “Derived” from QCD via the Instanton vacuum.
• Renormalization scale is naturally given.
•No free parameter

Gauged Effective Nonlocal Chiral Action

Musakhanov & H.-Ch. K, Phys. Lett. B 572, 181-188 (2003) 
H.-Ch.K, M. Musakhanov, M. Siddikov Phys. Lett. B 608, 95 (2005).
D. Diakonov & V. Petrov Nucl.Phys. B272 (1986) 457

Se↵ = �NcTr ln
h
i /D + im+ i

p
M(iD,m)U�5

p
M(iD,m)

i

Dilute instanton liquid ensemble



Nonlocal chiral quark model

Gauged Effective Nonlocal Chiral Action

Musakhanov & H.-Ch. K, Phys. Lett. B 572, 181-188 (2003) 
H.-Ch.K, M. Musakhanov, M. Siddikov Phys. Lett. B 608, 95 (2005).
D. Diakonov & V. Petrov Nucl.Phys. B272 (1986) 457
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#

d ⇡ 0.198GeV

M0 ⇡ 0.35GeV : It is determined by the gap equation.



EM Form factor of the pion

h⇡(pf )| †�µQ̂ |⇡(pi)i = (pi + pf )A10(q
2)

EM form factor (A10 )

S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014



EM Form factor of the pion

h⇡(pf )| †�µQ̂ |⇡(pi)i = (pi + pf )A10(q
2)

EM form factor (A10 )

: Local vertices

S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014



EM Form factor of the pion

h⇡(pf )| †�µQ̂ |⇡(pi)i = (pi + pf )A10(q
2)

EM form factor (A10 )

: Local vertices

: Nonlocal vertices

S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014



�
�r2⇥ = 0.675 fm

�
�r2⇥ = 0.672± 0.008 fm (Exp)

EM Form factor of the pion

S.i. Nam & HChK, Phys. Rev. D77 (2008) 094014

M(Phen.): 0.714 GeV 

M(Lattice): 0.727 GeV 

M(XQM): 0.738 GeV



14

Tensor Form factor of the pion

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).

⌦
⇡+(pf )

�� †(0)�µ⌫ (0)
��⇡+(pi)

↵
=

pµq⌫ � qµp⌫

m⇡
B10(Q

2)

p = (pf + pi)/2, q = pf � pi
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Tensor Form factor of the pion

Brommel et al. PRL101

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).

B10(Q
2) = B10(0)


1 +

Q2

pm2
p

��p

p-pole parametrization for the form factor

RG equation for the tensor form factor

B10(Q
2, µ) = B10(Q

2, µ0)


↵(µ)

↵(µ0)

� 4
33�2Nf
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Tensor Form factor of the pion

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).
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Tensor Form factor of the pion

S.i. Nam & H.-Ch.K, Phys. Lett. B 700, 305 (2011).



18Polarization

Unpolarized Polarized

spin

Spin density of the quark



19

Spin density of the quark

Results are in a good agreement with the lattice calculation!

Significant distortion appears for the polarized quark! 
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Spin density of the quark
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Stability of the pion
Isoscalar vector GPDs of the pion

2�abHI=0
⇡

(x, ⇠, t) =
1

2

Z
d�

2⇡
eix�(P ·n)h⇡a(p0)| ̄(��n/2)/n[��n/2,�n/2] (�n/2)|⇡b(p)i

Z
dx xHI=0

⇡ (x, ⇠, t) = A20(t) + 4⇠2A22(t)

The second moment of the GPD
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Stability of the pion
Isoscalar vector GPDs of the pion

2�abHI=0
⇡

(x, ⇠, t) =
1

2

Z
d�

2⇡
eix�(P ·n)h⇡a(p0)| ̄(��n/2)/n[��n/2,�n/2] (�n/2)|⇡b(p)i

Z
dx xHI=0

⇡ (x, ⇠, t) = A20(t) + 4⇠2A22(t)

The second moment of the GPD

: Generalized form factors of the pion



21

Stability of the pion
Isoscalar vector GPDs of the pion

2�abHI=0
⇡

(x, ⇠, t) =
1

2

Z
d�

2⇡
eix�(P ·n)h⇡a(p0)| ̄(��n/2)/n[��n/2,�n/2] (�n/2)|⇡b(p)i

Z
dx xHI=0

⇡ (x, ⇠, t) = A20(t) + 4⇠2A22(t)

The second moment of the GPD

: Generalized form factors of the pion

h⇡a(p0)|Tµ⌫(0)|⇡b(p)i = �ab

2
[(tgµ⌫ � qµqnu)⇥1(t) + 2PµP⌫⇥2(t)]

Energy-momentum Tensor Form factors (Pagels, 1966)

Tµ⌫(x) =
1

2
 ̄(x)�{i

 !
@ ⌫} (x) : QCD EMT operator
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Stability of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Time component of the EMT matrix element gives the pion mass.

The sum of the spatial component of the EMT matrix element 
gives the pressure of the pion, which should vanish!

(Based on the local model)

Zero in the chiral limit
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Stability of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Pressure of the pion beyond the chiral limit
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Stability of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Pressure of the pion beyond the chiral limit

Quark condensate
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Stability of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Pressure of the pion beyond the chiral limit

Quark condensate Pion decay constant
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Stability of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Pressure of the pion beyond the chiral limit

Quark condensate Pion decay constant

by the Gell-Mann-Oakes-Renner relation to linear m order
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Energy-momentum Tensor FFs

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

in the chiral limit
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Energy-momentum Tensor FFs

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

in the chiral limit

The difference arises from the explicit chiral symmetry breaking.
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Transverse charge density of the pion

H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.



26H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Transverse charge density of the pion



26H.D. Son & H.-Ch.K, to be published in PRD Rapid Comm.

Transverse charge density of the pion

The transverse charge density is divergent at b=0.



HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996) 

Low-Energy Constants

Derivative expansions: pion momentum as an expansion parameter

Weinberg term Gasser-Leutwyler terms

Effective chiral Lagrangian



Weinberg Lagrangian

H.A. Choi and HChK, PRD 69, 054004 (2004)

Gasser-Leutwyler Lagrangian

Effective chiral Lagrangian



Gasser-Leutwyler Lagrangian

Low-energy constants in flat space

H.A. Choi and HChK, PRD 69, 054004 (2004)



Gasser-Leutwyler Lagrangian

Low-energy constants in flat space

H.A. Choi and HChK, PRD 69, 054004 (2004)



Effective chiral Lagrangian in curved space

Gasser-Leutwyler Lagrangian



Effective chiral Lagrangian in curved space

Gasser-Leutwyler Lagrangian

Low-energy constants in curved space



Effective chiral Lagrangian in curved space

Gasser-Leutwyler Lagrangian

Low-energy constants in curved space

They can be derived either by expanding the action by  
the heat-kernel method or expand the EMTffs with respect to t.



Low-energy constants in curved space

Present Results

XPT Results (Gasser & Leutwyler)



Summary & Conclusion
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Summary
•We have reviewed recent investigations on the quark 
structures of the pion, based on the nonlocal chiral quark model 
from the instanton vacuum.  

• We have derived the EM and tensor form factors of the pion, 
from which we have obtained the quark transverse spin 
densities inside a pion.  

•We also have shown the energy-momentum tensor 
(gravitational or generalised) form factors of the pion. 

•The pressure of the pion nontrivially vanishes because of the 
Gell-Mann-Oakes-Renner relation.  

•We also have presented the higher-order transverse charge 
density of the pion. 
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Outlook
• The transverse charge and spin densities for the transition 
processes can be studied (K-pi transition is done, see the next 
talk by Hyeon-Dong Son). 

• The excited states for the nucleon and the hyperon can be 
investigated (Generalisation of the XQSM is under way). 

•Internal structure of Heavy-light quark systems 
(Derivation of the Partition function is close to the final result.) 

• New perspective on hadron tomography



Thank you very much!

Though this be madness, 
yet there is method in it.

Hamlet Act 2, Scene 2


