Hyperon-mixed Neutron-star matter in Dirac-Brueckner-Hartree-Fock approach

Department of Physics, Faculty of Science and Technology Tokyo University of Science Tetsuya Katayama

J-PARC hadron physics in 2014, Nov. 30 – Dec. 2, 2014 Ibaraki Quantum Beam Research Center

Table of Contents

Difference between the MFT and

the DBHF approach

- Model (DBHF)
- Numerical results
 - Symmetric nuclear matter
 - Neutron-star matter without hyperons
 - Neutron-star matter with hyperons
- Summary and future works

Models for isospin-asymmetric , dense matter

The reason for the great success of DBHF is the <u>density dependence</u> mainly caused by many-body effects, the Pauli exclusion principle and the short-range NN correlations.

Conventional DBHF vs Our DBHF

The conventional DBHF approach requires **two assumptions**:

- **Conventional DBHF approach** 1. The space components of the in-medium baryon self-energy, Σ^V , is ignored.
- 2. The relationship between the in-medium Tmatrix for NN scattering and the in-medium nucleon self-energies is not clear.
- 1. We fully consider the Σ^V . Our DBHF approach
- 2. We also include the negative-energy states of baryon in the Bethe-Salpeter amplitude.

Numerical results

Binding energy per particle in symmetric nuclear matter

Neutron stars without hyperons

Tolman-Oppenheimer-Volkoff (TOV) equation

Inclusion of hyperons

We assume that neutron-star matter is composed of ...

	Leptons	Mesons	Baryons
NIY5	e^-,μ^-	$\sigma,\delta,\omega,\rho,\eta,\pi$	$n, p, \Lambda, \Sigma^-, \Xi^-$
NIY <mark>8</mark>	e^-,μ^-	$\sigma,\delta,\omega,\rho,\eta,\pi$	$n, p, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0$

Calculation parameters for hyperons

Parameters for hyperons cannot be determined without large ambiguities.

SU(6) symmetry
$$g_{NN\omega}^{\text{e.g.}} = \frac{3}{2}g_{\Lambda\Lambda\omega} = g_{\Sigma\Sigma\omega} = 3g_{\Xi\Xi\omega}$$

• Baryon-Baryon-sigma coupling constants:

 $U_{\Lambda} \simeq -27 \,\mathrm{MeV}$ $U_{\Sigma^{-}} \simeq +30 \,\mathrm{MeV}$ $U_{\Xi^{-}} \simeq -15 \,\mathrm{MeV}$

• Cutoff parameters in the form factor: $\Lambda_{YYM} = \Lambda_{NNM}$ simple parameter set

Particle fractions for NIY5 and NIY8

The difference between the result in NIY5 and NIY8 is expected to be very small.

We proceed to the next calculation, where K and K^* mesons are considered.

Baryon-exchange and Baryon-transition processes

We assume that neutron-star matter is composed of ...

	Leptons	Mesons	Baryons
NIY5KK*	e^-, μ^-	$\sigma,\delta,\omega, ho,\eta,\pi,{m K},{m K}^{m *}$	$n, p, \Lambda, \Sigma^-, \Xi^-$

Particle fractions in cases of MFT and NIY5KK*

The results are similar to one another, except for the appearance of Σ^- in NIY5KK*.

However

EOSs in two cases make large difference.

Mass-radius relations for neutron stars

The DBHF calculation involves <u>the strong density dependence</u> of the in-medium baryonbaryon scattering amplitude.

Summary

- Using the improved DBHF approach, we have investigated the nuclear matter properties, and have applied the DBHF approach to neutron stars.
- The hyperon-mixed neutron-star calculation has predicted the maximum neutron-star mass of $2.02 M_{\odot}$.

Future works

• More realistic parameter set for hyperons