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Gergely Fejős Chiral symmetry restoration with functional renormalization...



Motivation

QCD Lagrangian with quarks and gluons:

L = −1

4
G a
µνG

µνa + ψ̄i (iγµD
µ −m)ijψj

Approximate chiral symmetry:

ψL → e iT
aθaLψL, ψR → e iT

aθaRψR

−→ UL(Nf )× UR(Nf ) ∼ UV (Nf )× UA(Nf )
−→ depending on the energy, Nf = 2, 3 have relevance

Chiral symmetry is spontaneuously broken in the ground state:

< ψ̄iψi > = < ψ̄i ,Rψi ,L > + < ψ̄i ,Lψi ,R > 6= 0

−→ < ψ̄i ,Rψj ,L > ∼ δij ⇒ symmetry broken to UV (Nf )

Chiral symmetry restoration? Critical temperature?
Quark mass dependence? Axial anomaly?
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Motivation

−→ Nf = 2 case: 2nd order nature depends on anomaly strenght
−→ small anomaly case: subtle, fixed point?
−→ vanishing quark masses: first order, but no direct evidence
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Chiral symmetry in effective meson models

Lagrangian of the n-flavor low energy strong interaction:

L = ∂µM∂µM†−µ2 Tr (MM†)− g1

n2
[Tr (MM†)]2− g2

n
Tr (MM†)2

−→ M = T a(sa + iπa) [scalar and pseudoscalar mesons]
−→ vanishing quark masses
−→ no anomaly

Renormalization group analysis: fixed point(s)?

β functions (ε-expansion, 1-loop)

β1 = −εḡ1 +
n2 + 4

3
ḡ2

1 +
4n

3
ḡ1ḡ2 + ḡ2

2

β2 = −εḡ2 +
2n

3
ḡ2

2 + 2ḡ1ḡ2

−→ in 3d, fixed points: ḡ1 = 3ε
n2+4

, ḡ2 = 0 [O(2n2) W.F.]
aaaaaaaaaaaaaaaaaaaaaāg1 = 0, ḡ2 = 0 [Gaussian]
−→ no IR stable fixed point exists!
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2n

3
ḡ2
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Chiral symmetry in effective meson models
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Inclusion of only the first quartic coupling:
−→ O(2n2) model with second order transition

Adding the second coupling: RG trajectories diverge from f.p.
−→ no second order transition
−→ indirect evidence of a first order transition

Direct evidence?
−→ Construction of the finite temperature effective potential
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Functional renormalization group flows

FRG: follows the idea of Wilsonian renormalization group

Zk [J] = exp(iWk [J]) =

∫
Dφe i

(
S[φ]+

∫
Jφ+

∫
1
2
φRkφ

)
Rk : IR regulator function
⇒ requriements: 1., scale separation (suppress modes q . k)
aaaaaaaaaaaaaaa 2., Rk −→∞ as k −→∞
aaaaaaaaaaaaaaa 3., Rk −→ 0 as k −→ 0

scale-dependent effective action:

Γk [φ̄] = Wk [J]−
∫

Jφ̄− 1

2

∫
φ̄Rk φ̄

e iΓk [φ̄] =

∫
Dφe i

(
S[φ]+

∫ δΓk
δφ̄

(φ−φ̄)+ 1
2

∫
(φ̄−φ)Rk (φ̄−φ)

)
=⇒ Γk≈∞[φ̄] = S [φ̄], Γk=0[φ̄] = Γ1PI [φ̄]

scale-dependent effective action interpolates between the
classical- and quantum effective action
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Functional renormalization group flows

The scale-dependent effective action obeys the following flow
equation:

∂kΓk =
1

2
STr

[
1

Γ
(2)
k [φ̄] + Rk

∂kRk

]

−→ functional integro-differential equation
−→ not solvable, approximation(s) needed

Approximations? → derivative expansion!

Γk [φ] =

∫
x

(
Vk [φ] + φ(Zk∂τ − Ak∇2 −Wk∂

2
τ )φ+ ...

)
aaaa⇒ Zk ,Ak = 1,Wk = 0 with Vk 6= 0 is reliable (LPA)

Finite temperature flow equation for the local potential:

∂kVk =
k4

6π2
T
∑
ωm

∑
i

1

ω2
m + k2 + µ2

i (k)
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Functional renormalization group flows

Symmetry breaking pattern (Wafa-Vitten theorem):

=⇒ UL(n)× UR(n)→ UV (n)
=⇒ < M >= v0T

0 ∼ 1̂
Vk is a function of:
=⇒ chiral invariants: I1 = Tr [MM†]
aaaaaaaaaaaaaaaaaaa I2 = Tr [MM† − Tr (MM†)/n)]2

aaaaaaaaaaaaaaaaaaa I3 = Tr [MM† − Tr (MM†)/n)]3

aaaaaaaaaaaaaaaaaaa ...

Chiral expansion around the < M > configuration:

Vk(I1, I2, ...In) = Uk(I1) +
∑
{α}

C
(α)
k (I1)

n∏
i=2

Iαi
i

We derive and solve flow equations for the coefficient

functions Uk and C
(α)
k

−→ very efficent numerically
−→ 1-dimensional grids (not n-dim.)
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Functional renormalization group flows

Flow equations of the coefficients are similary to the
Dyson-Schwinger hierarchy:

Uk(I1) ←− C
(0,1,0,..)
k

C
(0,1,0...)
k ←− C

(0,0,1,0...)
k ,C

(0,2,0,..)
k

C
(0,0,1,0...)
k ←− ...

Truncation is necessary
−→ we keep only those coefficients that are already
aaaanonzero at classical level

Vk ≈ Uk(I1) + C
(0,1,0,0..)
k (I1) · I2

Evaluation of Vk at < M >= v0T
0

−→ I1|v0 = v2
0 /2, I2|v0 = 0
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Functional renormalization group flows

∂kUk(I1) =
k4T

6π2

∑
ωm

(
n2

ω2
m + E 2

π

+
n2 − 1

ω2
m + E 2

a0

+
1

ω2
m + E 2

σ

)
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6π2

∑
ωm

(
n2

ω2
m + E 2

π

+
n2 − 1

ω2
m + E 2

a0

+
1

ω2
m + E 2

σ

)

∂kCk(I1) =
k4T

6π2

∑
ωm

[
4(3Ck + 2I1C

′
k)2/n

(ω2
m + E 2

a0
)2(ω2

m + E 2
σ)

+
128C 5

k I
3
1 /n

(ω2
m + E 2

π)3(ω2
m + E 2

a0
)3

+
4Ck

(
4Ck(n2 − 3) + (1− 4n2)I1C

′
k

)
/n

(ω2
m + E 2

a0
)3

+
4
(
3CkC

′
k I1 + 4I 2

1 C
′
k + Ck(3Ck − 2C ′′k I

2
1 )
)
/n

(ω2
m + E 2

a0
)(ω2

m + E 2
σ)2

+
64C 3

k I
2
1 (Ck − I1C

′
k)/n

(ω2
m + E 2

π)2(ω2
m + E 2

a0
)3
−

48C 2
k I

2
1 C
′
k

(ω2
m + E 2

π)(ω2
m + E 2

a0
)3

+ ...
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Functional renormalization group flows

Assumption of Vk : (form of classical potential)

Vk = µ2
k Tr (MM†) +

g1,k

n2
[Tr (MM†)]2 +

g2,k

n
Tr (MM†)2

We recover the one-loop β-functions:

β1 = −εḡ1,k +
n2 + 4

3
ḡ2

1,k +
4n

3
ḡ1,k ḡ2,k + ḡ2

2,k

β2 = −εḡ2,k +
2n

3
ḡ2

2,k + 2ḡ1,k ḡ2,k

Flow of the mass parameter:

∂kµ
2
k = −k4 (n2 + 1)g1,k + 2ng2,k

6(k2 + µ2
k)2

The functional flow equations contain much more:
−→ infinite resummation of n-point couplings
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Numerical results (effective potential)
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k = 0 is very demanding to reach numerically
−→ the flow was stopped at k/Λ = 0.2
−→ at finite k , the potential is not convex

First order transition is observed
−→ in the whole range of the parameter space
−→ irrespectively of the flavor number n
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-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0  0.2  0.4  0.6  0.8  1

V
k/

Λ
4

v0/√ 2  Λ

µ2/Λ2 = -0.05,  g1 = -0.8,  g2 = 1.1,  n = 3

k/Λ = 0.6
k/Λ = 0.5
k/Λ = 0.4
k/Λ = 0.3
k/Λ = 0.2
k/Λ = 0.1 -0.00015

-0.0001

-5e-05

 0

 5e-05

 0  0.1  0.2  0.3  0.4  0.5  0.6

V
k/

Λ
4

v0/√ 2  Λ

µ2/Λ2 = -0.05,  g1 = -0.8,  g2 = 1.1,  n = 3

k/Λ = 0.130
k/Λ = 0.100
k/Λ = 0.055
k/Λ = 0.030

k/Λ = 0

When k → 0, the potential gradually becomes convex

The effective potential is not a convenient quantity for
identifying 1st order transitions
−→ crit. temp. and discontinuation are defined as limits:

TC = limk→0TC (k), ∆v0 = limk→0∆v0(k)

−→ numerics: they can be obtained via extrapolation
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Numerical results (TC )

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

T
c/

Λ

g2

µ2/Λ2 = -0.05,   n = 2

g1 = -0.2
g1 = -0.4
g1 = -0.6
g1 = -0.8

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

T
c/

Λ

g2

µ2/Λ2 = -0.05,   n = 3

g1 = -0.2
g1 = -0.4
g1 = -0.6
g1 = -0.8

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

T
c/

Λ

g2

µ2/Λ2 = -0.05,   n = 4

g1 = -0.2
g1 = -0.4
g1 = -0.6
g1 = -0.8

 0.6

 0.8

 1

 1.2

 1.4

 0.8  1  1.2  1.4  1.6  1.8

T
c/

Λ

g2

µ2/Λ2 = -0.1,  n = 3

g1 = -0.2
g1 = -0.4
g1 = -0.6
g1 = -0.8
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Numerical results (discontinuity)
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Numerical results (large-n)

Large-n scalings of functions:

Uk(I1) = n2uk(i1), Ck(I1) = ck(i1)/n, I1 = n2i1

n-dependence of TC :

aaaaa
 0.575

 0.58
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 0.59
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 0.6
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 2  3  4  5  6  7  8  9  10

T
c/

Λ

n

µ2/Λ2 = -0.05,  g1 = -0.4,  g2 = 1.0

Less than 3% difference between n = 3 and n =∞
−→ large-n expansion is quite robust

Gergely Fejős Chiral symmetry restoration with functional renormalization...



Numerical results
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Approximating Ck(I1) ≈ const. is crude
−→ the function develops a structure as k → 0
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Numerical results

−→ our method: no anomaly included
−→ for Nf = 2, 3 we obtain first order transitions
−→ if anomaly disappears at TC ⇒ Columbia plot has to change
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Anomaly

Anomaly term in the Lagrangian:

LUA(1) = c(detM + detM†)

−→ changes the masses and spoils chiral symmetry

∂kVk =
k4

6π2
T
∑
ωm

∑
i

1

ω2
m + k2 + µ2

i (k)

−→ Vk 6= Vk(I1, I2, ...)

Way out: expand the r.h.s. in terms of the anomaly coefficient

This procedure is compatible with the Ansatz

Vk = Uk(I1) + Ck(I1) · I2 + ck(I1)(detM + detM†)

−→ obtain the flow and T -dependence of ck(I1) coeff.
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Anomaly

Anomaly term in the Lagrangian:

LUA(1) = c(detM + detM†)

−→ changes the masses and spoils chiral symmetry

∂kVk =
k4

6π2
T
∑
ωm

∑
i

1

ω2
m + k2 + µ2

i (k)

−→ Vk 6= Vk(I1, I2, ...)

Way out: expand the r.h.s. in terms of the anomaly coefficient
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Vk = Uk(I1) + Ck(I1) · I2 + ck(I1)(detM + detM†)

−→ obtain the flow and T -dependence of ck(I1) coeff.
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Finite quark masses

Finite quark masses are realized as explicit symmetry breaking
terms:

Lh = Tr [H(M + M†)] ≡ h0s
0 + h8s

8

−→ these couplings do not change the flow equations at all
−→ they do not have an RG-flow
−→ only effect: shift the value of the effective potential

Implementation is easy and straightforward

Work is under progress...
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Conclusions

Analysis of the U(n)× U(n) meson model
−→ no anomaly, zero quark masses
−→ top left and bottom left regions of the Columbia plot

Functional renormalization group method
−→ local potential approximation
−→ chiral invariant expansion

Calculation of the effective potential
−→ convexity
−→ TC = limk→0 TC (k), ∆v0 = limk→0 ∆v0(k)

Only first order transitions have been observed,
irrespectively of n
−→ if the anomaly is recovered around TC ,
aaaano second order transition appears!
−→ Columbia plot changes

Gergely Fejős Chiral symmetry restoration with functional renormalization...


