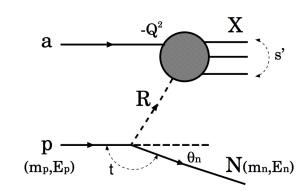
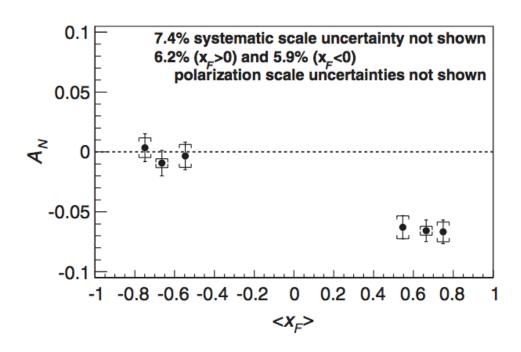
Very forward neutron in pp and pA collisions


Minjung Kim (SNU/RIKEN)


Spinfest Workshop @ J-PARC Tokai, Japan 2015-07-23

Large A_N for very forward neutron

A_N : Transverse Single Spin Asymmetry

$$A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

Phys. Rev. D 88, 032006 (2013)

Nonzero A_N

$$A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{\sum_X |\langle nX|T| \uparrow \rangle|^2 - \sum_X |\langle nX|T| \downarrow \rangle|^2}{\sum_X |\langle nX|T| \uparrow \rangle|^2 + \sum_X |\langle nX|T| \downarrow \rangle|^2}$$

Using
$$|\uparrow>=\frac{1}{\sqrt{2}}(|+>+i|->)$$
 , $|\downarrow>=\frac{1}{\sqrt{2}}(|+>-i|->)$

$$p^{\uparrow}a \rightarrow nX$$

$$a \xrightarrow{-Q^{2}} X$$

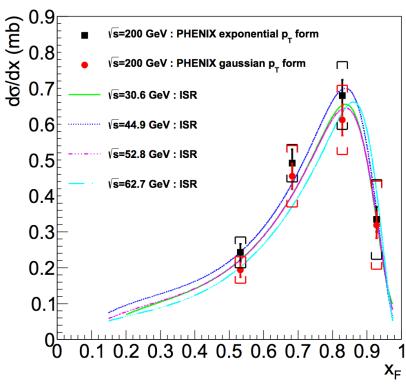
$$R \xrightarrow{\theta_{n}} N_{(m_{n},E_{n})}$$

$$\sum_{X} |< nX|T| \uparrow > |^2 - \sum_{X} |< nX|T| \downarrow > |^2 = -2Im \sum_{X} < nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^+|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^-|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^-|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^-|nX| > |^2 = -2Im \sum_{X} |< nX|T| - > < +|T^-|nX| > |^2 = -2Im \sum_{X} |< n$$

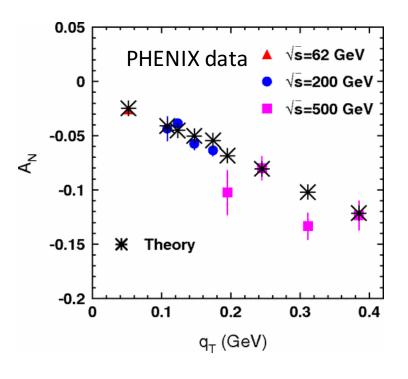
 $A_N \neq 0$ if there is a nonzero term for Interference between spin-flip and nonflip interaction with different phase

Theory for very forward neutron $p^{\uparrow}a \rightarrow nX$

• Non-perturbative ($p_T < 0.22 {\rm GeV}$ at PHENIX Zero Degree) -> pQCD not applicable

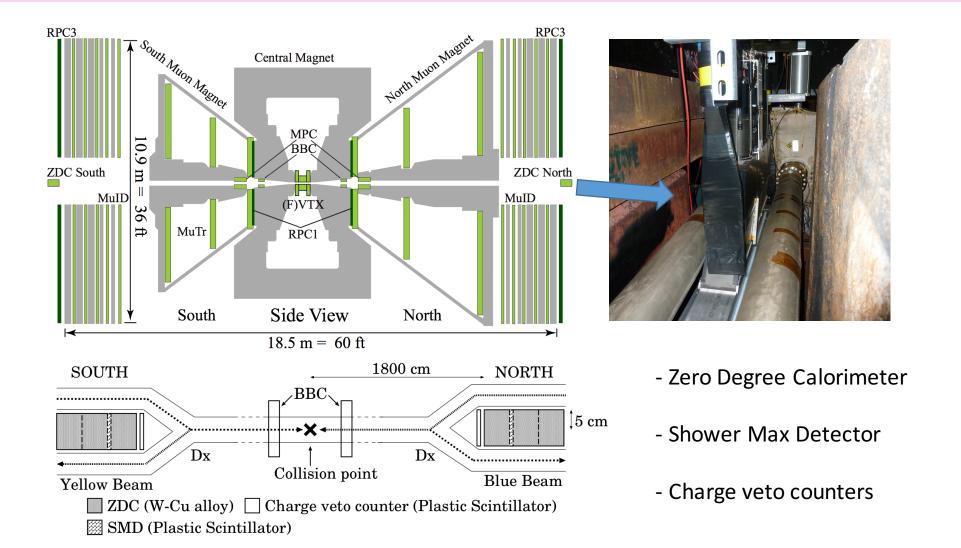

• There are theories to describe cross-section, and A_N of very forward neutron production: One Pion Exchange model in Regge framework explain pp collision data well.

One Pion Exchange model

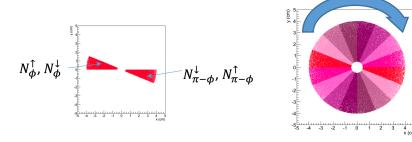

Approach	Cross section description	A_N description	Details
1. π exchange with Born approximation	• Overshoots data $ \text{- Describe peak} $ at $x_F \cong 0.8 $	0	• π pole at wave function $\frac{1}{m_{\pi}^2 - t}$ -> peak at $x_F \cong 0.8$ (agree with data) • No phase shift
2. π exchange with absorptive correction	Agree with data	Nonzero, but smaller than observed value	 Survival probability multiplied to final state function -> suppressed cross section
3. $\underline{\pi}$ exchange + Interference between π and a_1 Reggeon	• Agree with data	Agree with data	 π vertex : spin-flip & nonflip a₁ vertex : nonflip a₁ form factor is not known. A model is applied for this calculation.

7/23/15

Experimental results

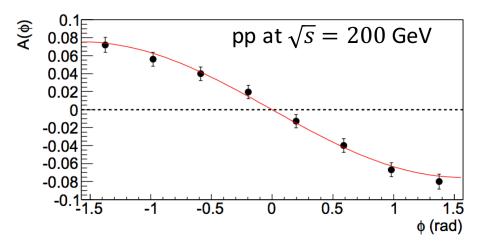


Phys. Rev. D **88**, 032006 (2013) peak at $x_F \cong 0.8$


Phys. Rev. D 84, 114012 (2011)

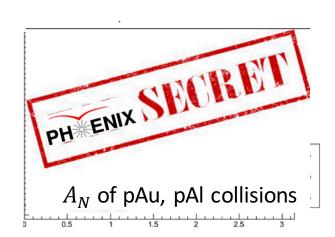
A_N measurement - Detectors

A_N measurement - Analysis


$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}} = \frac{\sigma_{R}^{\downarrow} - \sigma_{R}^{\uparrow}}{\sigma_{R}^{\downarrow} + \sigma_{R}^{\uparrow}} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}} = \frac{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow}} - \sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}{\sqrt{\sigma_{L}^{\uparrow} \sigma_{R}^{\downarrow}} + \sqrt{\sigma_{L}^{\downarrow} \sigma_{R}^{\uparrow}}}$$

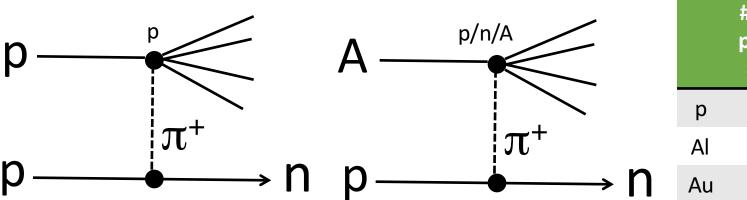
Measured value:

$$e_{N}(\phi) \equiv \frac{\sqrt{N_{\phi}^{\uparrow} N_{\pi-\phi}^{\downarrow}} - \sqrt{N_{\phi}^{\downarrow} N_{\pi-\phi}^{\uparrow}}}{\sqrt{N_{\phi}^{\uparrow} N_{\pi-\phi}^{\downarrow}} + \sqrt{N_{\phi}^{\downarrow} N_{\pi-\phi}^{\uparrow}}}$$


$$A_N(\phi) = \frac{e_N(\phi)}{P} \frac{1}{C_{\phi}}$$

Phys. Rev. D 88, 032006 (2013)

One Pion Exchange model – Does it work for pA?


- pp, pAu, & pAl collisions at $\sqrt{s} = 200$ GeV in RHIC, 2015
- Interesting A dependence of A_N is observed. Analysis for pAu, & pAl data is ongoing.
- No theoretical prediction is made for pAl, pAu before the experiment. Theoretical challenge to apply their framework to pA case has started.

Major theoretical development?

- Any isospin effect taken account for neutron?
- Coherent effect?

What do we learn from pAl, pAu A_N ?

	# of prot on	# of neutr on	A
р	1	0	1
Al	13	14	27
Au	79	118	197

- It is well known interference between π and a_1 Reggeon plays important role in $A_N^{\rm pp}$.
- Comparing $A_N^{\rm pp}$, $A_N^{\rm pAl}$ and $A_N^{\rm pAu}$ may give hint if A_N depends on A (coherent effect) or # of neutron (isospin effect).

Summary

- Large A_N of very forward neutron is observed.
- Cross section, and A_N of PHENIX pp collision are well described by π exchange and interference between π and a_1 Reggeon in Regge framework.
- Interesting A dependence of A_N is observed for pAu, & pAl data. Analysis for pAu, & pAl data is ongoing
- No theoretical prediction is made for pAl, pAu before the experiment. Theoretical challenge to apply their framework to pA case has started.