SeaQuest Experiment at Fermilab

Spinfest 2015

Kei Nagai

Tokyo Institute of Technology

23rd July, 2015

List of Contents

- Introduction
- 2 SeaQuest Experiment
- 3 Experimental Setup
- 4 Analysis and Results
- Summary

1. Introduction

1. Introduction

Structure of the Proton

- The quarks in the proton exchange gluons.
- Anti-quarks are created by gluon splitting.

$$g \to u + \bar{u}, \quad g \to d + \bar{d}$$

• The amount of \bar{d} in the proton has been thought to be the same as that of \bar{u} since the masses of d and u are almost the same.

$$\bar{d} = \bar{u}$$

"Flavor Symmetry"

Gottfried Sum

 Gottfried sum is the first experimental approach to test flavor symmetry.

$$S_G \equiv \int_0^1 \frac{dx}{x} \left[F_2^p(x) - F_2^n(x) \right] = \frac{1}{3} + \frac{1}{3} (\bar{u}_p - \bar{d}_p)$$

 $F_2^p(x)$, $F_2^n(x)$: structure functions of proton and neutron, respectively

 Assuming that parton distribution functions in neutron and proton have flavor symmetry:

$$u_p(x) = d_n(x), \ d_p(x) = u_n(x), \ \bar{u}_p(x) = \bar{d}_n(x), \ \bar{d}_p(x) = \bar{u}_n(x)$$

- If \bar{d} and \bar{u} in proton are symmetric, Gottfried Sum is 1/3.
- NMC experiment at CERN (1990)

$$S_G = 0.235 \pm 0.026 < 1/3$$

 $\to \bar{d} \neq \bar{u}$

Discovery of "Flavor Asymmetry"

\boldsymbol{x} Dependence of Flavor Asymmetry

E866 experiment at Fermilab measured Bjorken x dependence of \bar{d}/\bar{u} .

$$(0.015 < x < 0.35)$$

- The first measurement of x dependence of flavor asymmetry.
- 70% asymmetry at maximum has been measured at $x \sim 0.2$.
 - Some theories are proposed for explaining this result (discuss one of them later).
 - They can reproduce this shape of asymmetry.
- $\bar{d} < \bar{u}$ at $x \sim 0.3$?
 - ▶ No theory can explain it.
 - Statistical errors are very large.
 More accurate measurement is needed.

Meson Cloud Model

Meson Cloud Model can reproduce the flavor asymmetry best at present.

 A proton wave function contains virtual meson wave functions.

$$|\mathbf{p}\rangle = |\mathbf{p}_0\rangle + \alpha |\mathbf{n}\pi^+\rangle + \beta |\Delta^{++}\pi^-\rangle + \cdots$$

- $ightharpoonup p
 ightarrow n + \pi^+$: π^+ includes \bar{d} .
- $p \rightarrow \Delta^{++} + \pi^-$: π^- includes \bar{u} .
 - * Probability of $p \to n + \pi^+$ is higher than that of $p \to \Delta^{++} + \pi^-$.
 - * It leads to $\bar{d} > \bar{u}$.

▶ It will be helpful for understanding the theory of proton structure.

2. SeaQuest Experiment

2. SeaQuest Experiment

- SeaQuest is a Drell-Yan experiment at Fermi National Accelerator Laboratory (Fermilab).
- Collaboration: Japan, USA, Taiwan
- 120 GeV proton beam extracted from Main Injector is used.
- SeaQuest measures \bar{d}/\bar{u} in the region 0.1 < x < 0.45 by Drell–Yan Process.
 - Only one experiment which measures \bar{d}/\bar{u} at large Bjorken x.

Drell-Yan Process

 Drell-Yan process can directly access anti-quarks in the proton.

$$q\bar{q} \to \gamma^* \to \mu^+ \mu^-$$

SeaQuest uses proton-proton and proton-deuteron Drell-Yan process.

•
$$\frac{d^2\sigma}{dx_t dx_b} = \frac{4\pi\alpha^2}{9x_t x_b} \frac{1}{s} \sum e^2 [\bar{q}_t(x_t)q_b(x_b) + \bar{q}_b(x_b)q_t(x_t)]$$

- $x_t \ll x_b$ in SeaQuest acceptance.
- $\bar{q}_b(x_b)q_t(x_t)$ can be ignored.
- Cross-section ratio provides \bar{d}/\bar{u} :

$$\frac{1}{2} \frac{\sigma^{pd \to \mu^+ \mu^-}}{\sigma^{pp \to \mu^+ \mu^-}} \bigg|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

Goal

Clarify the behavior of \bar{d}/\bar{u} at large Bjorken x.

 Red points show the expected statistical errors of all the data of SeaQuest.

(Magnitudes are set to 1.)

- SeaQuest will obtain ×50 more statistics than E866 experiment.
 - ▶ Beam energy: 800 GeV (E866) \rightarrow 120 GeV (SeaQuest)
 - \star $\sigma_{\mathrm{DY}} \propto 1/s \, \cdots \, \times 7 \, \mathrm{signals}$
 - $\star \sigma_{J/\psi} \propto s \cdots \times 1/7$ main backgrounds

Schedule

Run 2 data taking Accelerator Shutdown Run 3 data taking Accelerator Shutdown Run 4 data taking Nov. Sept. Oct. July Sept. 2013 2014 2014 2015 2015

- First long run of data taking was done (Run 2).
 - ► Data analyzed and shown in this presentation are taken in Run 2.
- Integrated number of protons:

$$\sim 0.8 \times 10^{18}$$

It is $\sim 20\%$ of final number of protons.

• SeaQuest will take 3.8×10^{18} protons by July 2016.

3. Experimental Setup

3. Experimental Setup

Proton Beam

- Beam energy: 120 GeV
 - Center of mass energy $\sqrt{s} = 15 \text{ GeV}$
- 5 seconds of the beam is provided every 60 seconds.
 - ► The other 55 seconds of the beam is used for a neutrino experiment at Fermilab.
- Beam bunch
 - ► Frequency: 53 MHz (comes every 19 ns)
 - One bunch contains 40k protons on average.
 - ▶ Duty Factor (indicates stability of beam intensity I) $\equiv \langle I \rangle^2 / \langle I^2 \rangle$: 30% in Run 2 \rightarrow 45% in Run 3

Spectrometer 25 m long

Measures momenta of dimuons from Drell-Yan process.

- Targets: proton, deuteron, carbon, iron and tungsten
- Four Tracking "Stations"
 - Hodoscopes for Trigger.
 - Drift Chambers or Proportional Tubes for Tracking.

- Two Dipole Magnets
 - ► Focuses the muons and dumps the beam (1st magnet).
 - Determines muon momenta (2nd magnet).

Trigger

- "Trigger Road"
 - A rough decision on the Drell-Yan muons pass.
 - ► It is determined by Hodoscopes of St. 1, 2, 3 and 4. ex. (H1, H2, H3, H4)=(13, 13, 15, 15) · · · each number is paddle ID
- "Trigger Road Set"
 - A set of trigger roads enabled in trigger decision.
- Dimuon Trigger
 - At least one accepted positive muon and one accepted negative muon are required.
 - ▶ Drell–Yan rate (mass $\geq 4 \text{ GeV}/c^2$): a few Hz
 - Random coincidence is dominant: $\sim 1~\mathrm{kHz}$

4. Analysis and Results

4. Analysis and Results

Dimuon Mass

- Data set: approximetely 5% of final data set are analyzed
 - July 25th Sept. 3rd, 2014
- The distribution shapes of Drell–Yan, J/ψ and ψ' events were estimated with simulation.

- Shape of random backgrounds was estimated using real data.
- Experimental data were reasonably well fitted.
 - Detectors and tracking tools work as expected.
- Drell-Yan events are dominant at mass $> 4.2 \; \mathrm{GeV}$

Spinfest 2015 Kei Nagai 23rd July, 2015 18 / 21

Cross-section Ratio

Cross-section Ratio Preview

Cross-section ratio of σ^{pd} and σ^{pp}

- dimuon mass $\geq 4.2 \text{ GeV}$
- The result of cross-section ratio is consistent with the E866 result at small \boldsymbol{x} .

19 / 21

- Systematic error is being investigated and reduced.
 - Main cause of this is beam intensity dependence.

Flavor Asymmetry

• \bar{d}/\bar{u} is derived from cross-section ratio using the formula

$$\frac{1}{2}\frac{\sigma^{pd}}{\sigma^{pp}}\Big|_{x_b\gg x_t}\approx\frac{1}{2}\left[1+\frac{\bar{d}(x_t)}{\bar{u}(x_t)}\right]$$

Flavor Asymmetry Preview

20 / 21

- Systematic error of \bar{d}/\bar{u} is still large but is being investigated and reduced.
- \bullet The results of \bar{d}/\bar{u} are consistent with the E866 results at small Bjorken x.
- ullet We need more statistics to clarify the behavior at large Bjorken x.
 - 20 times more data will be used finally.
 - Data taking and quality assurance of the data are in progress.

5. Summary

- Bjorken x dependence of flavor asymmetry of anti-quark is important to understand the structure of the proton.
- SeaQuest measures flavor asymmetry of anti-quarks in the proton at large x (0.1 < x < 0.45).
- 20% of final number of protons have already been taken.
- 5% of final data set were analyzed.
- Dimuon mass was reconstructed well.
 - Detectors and tracking tools work as expected.
- Cross-section ratio is consistent with that of E866 at small x.
 - Systematic error is large because of beam intensity dependence of cross-section ratio.
 - ▶ We are investigating it and reducing the systematic error.
- ullet Flavor asymmetry is consistent with that of E866 at small x.
 - ▶ In order to clarify the behavior at large *x*, we need more data. It is in progress.