The $\eta \rightarrow 3\pi$ decay in the nuclear medium as a possible probe for chiral restoration

Shuntaro Sakai Teiji Kunihiro (Kyoto University)

<u>Contents</u>

- Introduction
 - $\eta \rightarrow 3\pi$ decay in free space
 - Aim of our study on $\eta \rightarrow 3\pi$ decay in nuclear medium
- Set up of the calculation
 - Linear σ model with nucleon degree of freedom
- Results
 - $\eta \rightarrow 3\pi$ decay with linear σ model in free space
 - $\eta \rightarrow 3\pi$ decay in symmetric nuclear medium
- Summary and future prospects

Introduction $-\eta \rightarrow 3\pi$ decay in free space

$\eta \rightarrow 3\pi$ decay in nuclear medium

Previous study

The analysis of the nuclear medium effect on the $\eta \rightarrow 3\pi$ decay width with the non-linear σ model

Enhancement of the $\eta \rightarrow 3\pi$ decay width by $\rho = \rho_n + \rho_p$ and $\delta \rho = \rho_n - \rho_p$

S.S. and T. Kunihiro, PTEP (2015) 013D03, ibid., 089201.

 ✓ The enhancement by baryon number density p is large (factor 2~3 compared with the value @p=0)

times Significant effect of the 4-meson NN vertex

Similarity to the enhancement of the $\pi\pi$ cross section in nuclear medium D. Jido, T. Hatsuda, T. Kunihiro, PRD63(2000)011901.

Chiral restoration is important!

Some relationship with the chiral restoration in nuclear medium?

Chiral restoration and softening of the σ mode

Significant effect of the 4π -NN vertex on the $\pi\pi$ scattering in nuclear medium D. Jido, T. Hatsuda, T. Kunihiro, PRD63(2000)011901. Chiral restoration in nuclear medium $\left\langle \bar{q}q\right\rangle_{\rho} = \left(1 - \frac{\sigma_{\pi N}}{m_{-}^{2} f_{-}^{2}}\rho\right) \left\langle \bar{q}q\right\rangle_{\rho=0} + O(\rho^{n>1})$ A.U. E.G.Durkarev, E.M.Levin, NPA511(1990)679., T.D.Cohen, et al., PRC45(1992)1881. 1 Reduction of the order parameter of 0.8 the spontaneous breaking of chiral symmetry 0.6 \checkmark $\pi\pi$ scattering amplitude \checkmark $\pi\pi$ scattering amplitude 0.4 from non-linear σ model from linear σ model 0.2 300 400 $\boldsymbol{X}_{\langle\sigma
angle}$ Large m_g $\mathcal{M}_{\pi\pi\to\pi\pi} \sim \frac{s - m_\pi^2}{s - m^2}$ $\mathcal{M}_{\pi\pi\to\pi\pi} \sim \frac{1}{f_{-}^2} \left(1 + \alpha\rho\right)$ (Dynamics other than NG bosons Z. Aouissat, et al., PRC61(2000)012202., Experimental attempt in $\pi\pi$ system are contained in LECs) D. Davesne, et al., PRC62(2000)024604. V.Thorsson, A. Wirzba, NPA589(1995)633.

Chiral restoration in nuclear medium \rightarrow Enhancement of the cross section near $2m_{\pi}$

(Reflect the softening of the σ mode)

R.S.Hayano, T.Hatsuda,

Rev.Mod.Phys.82(2010)2949.

Purpose of this study

Investigate the significance of the role of the σ meson

and chiral restoration in the $\eta \rightarrow 3\pi$ decay in nuclear medium

New possible probe for chiral restoration

Analysis with the linear σ model (explicit σ meson degree of freedom)

 $\$ The ρ -meson contribution is ignored for simplicity

<u>Set up</u>

- Linear sigma model with 3 flavor
 - Chiral SU(3) symmetry is respected
 - Explicit σ meson degree of freedom is included
 - Isospin symmetry breaking by non-degenerate u and d quarks

Lagrangian of linear σ model

$$\mathcal{L} = \frac{1}{2} \operatorname{tr}(\partial_{\mu} M \partial^{\mu} M^{\dagger}) - \frac{\mu^{2}}{2} \operatorname{tr} M M^{\dagger} - \frac{\lambda}{4} \operatorname{tr}(M M^{\dagger})^{2} - \frac{\lambda'}{4} \left(\operatorname{tr} M M^{\dagger}\right)^{2} + \frac{B}{2} \left(\operatorname{det} M + \operatorname{det} M^{\dagger}\right) + \frac{A}{2} \operatorname{tr}(\chi M^{\dagger} + M \chi^{\dagger}) + \bar{N} \left(i \partial \!\!\!/ - g M_{5}\right) N$$

$$M: \text{meson field} \qquad \chi = \begin{pmatrix} m_u \\ m_d \\ m_s \end{pmatrix}: \text{Isospin symmetry breaking (} m_u \neq m_d \neq m_s\text{)} \\ m_d - m_u = m_{K^{\pm}}^2 - m_{K^0}^2 - m_{\pi^{\pm}}^2 + m_{\pi^0}^2 \\ m_d - m_u = m_{K^{\pm}}^2 - m_{K^0}^2 - m_{\pi^{\pm}}^2 + m_{\pi^0}^2 \\ m_d = M_{M^{-1}} + M_{M^{-1}} + m_{\pi^0} + M_{M^{-1}} + m_{\pi^0} + M_{M^{-1}} + m_{\pi^0} + M_{M^{-1}} \\ m_d = M_{M^{-1}} + m_{\pi^0} + M_{M^{-1}} + M_{M^{-1$$

$$M = M_{\text{scalar}} + M_{\text{pseudo scalar}}$$
 $M_5 = M_{\text{scalar}} + i\gamma_5 M_{\text{pseudo scalar}}$
 $M_{\text{scalar}} = \sum_{a=0}^8 \frac{\sigma_a \lambda_a}{\sqrt{2}}$ $M_{\text{pseudo scalar}} = \sum_{a=0}^8 \frac{\pi_a \lambda_a}{\sqrt{2}}$

% The 30% reduction of $\langle q^{\text{bar}}q\rangle$ is assumed.

(K.Suzuki, et.al. Phys.Rev.Lett.92(2004)072302.)

Calculation in free space

J. Schechter and Y. Ueda, PRD4(1971)733., W. Hudnall and J. Schechter, PRD9(1974)2111., S.Raby, PRD13(1976)2594.

<u>Matrix element of $\eta \rightarrow 3\pi$ decay</u> with linear σ model

 $\mathcal{M}_{n \to \pi^+ \pi^- \pi^0}^{\text{L}\sigma\text{M}} = \mathcal{M}_{n \to \pi^+ \pi^- \pi^0}^{\text{contact}} + \mathcal{M}_{n \to \pi^+ \pi^- \pi^0}^{\text{isoscalar}} + \mathcal{M}_{n \to \pi^+ \pi^- \pi^0}^{\text{isovector}}$

 Contribution purely from meson 4pt. vertex $\mathcal{M}_{\eta \to \pi^+ \pi^- \pi^0}^{\text{contact}} = 2(-\sin \theta_{\eta \pi^0})g_{\pi_3 \pi_3 \pi^+ \pi^-}$ $+ 2\sin\theta_{n\pi^0}g_{nn\pi^+\pi^-} + \sin\theta_{\eta'\pi^0}g_{\eta\eta'\pi^+\pi^-}$

•Contribution from scalar meson (σ, f₀) exchange $\mathcal{M}_{\eta \to \pi^{+} \pi^{-} \pi^{0}}^{\text{isoscalar}} = -g_{\sigma \eta \pi^{0}} \frac{1}{s - m_{\sigma}^{2}} g_{\sigma \pi^{+} \pi^{-}} - g_{f_{0} \eta \pi^{0}} \frac{1}{s - m_{f_{\sigma}}^{2}} g_{f_{0} \pi^{+} \pi^{-}} \qquad \left| \begin{array}{c} \sigma, f_{0} \\ \frac{\eta}{s} \\ \frac{\eta}{s}$

X3. Experimental value: 300eV

from PDG (J.Beringer, et al., PRD86(2012)01001.)

<u>Medium effect on $\eta \rightarrow 3\pi$ decay</u>

%1. Nucleon field (solid line) \leftarrow Mean field approximation %2. Inclusion of nucleon 1-loop \leftarrow Fermi momentum k_f: small

X Mass modification of the ps mesons (π, η): relatively small (30~40MeV enhancement @ $\rho=\rho_0$)

> \Leftrightarrow Large reduction of mass and width of σ meson (several 100MeV reduction @p=p₀)

✓ Width of the σ meson: tree level

(The σ meson mass @ ρ =0 is an input.)

<u>Results</u>

• $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay width is enhanced by the nuclear medium

in the wide range of σ meson mass

- Large dependence of the enhancement on the σ meson mass @p=0
 - The enhancement is factor $2^{5} \leftarrow m_{\sigma} = 500^{668} MeV$
 - The width is enhanced in the smaller ρ region with smaller m_{σ} @ ρ =0

<u>Spectral function</u> of sigma meson in nuclear medium

XSimilar discussion in ππ scattering

T. Hatsuda, T. Kunihiro, H. Shimizu, PRL82(1999)2840 (Spectral enhancement near 2π threshold: general phenomenon)

<u>Summary</u>

- The σ meson in linear σ model plays

important role in $\eta \rightarrow 3\pi$ decay even in free space (about 200eV with the σ meson exchange)

• $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay width is enhanced

by the effect of nuclear medium

- The enhancement largely depends on the σ meson mass @ ρ =0 (2~5 times larger than the value @ ρ =0 from m_{σ}=500~668MeV)
- The enhancement reflects the softening of the σ mode (modification of spectral function of σ meson)

Future prospects

- Effect of the asymmetric nuclear medium ($\delta \rho \neq 0$)
- More reasonable treatment of the final state interaction
 - The $\pi\pi$ composite component of the σ mode
 - Contribution from the ρ meson
- Contribution of the excited baryons (N^{*}, Δ) in nuclear medium

and nuclear absorption

• Influence on the $\pi A \rightarrow \pi \eta A'$ reaction in forward direction

% Sensitivity to δρ=ρ_n-ρ_p

Thank you for your attention!