Compositeness of near-threshold unstable states

2 March 2016 @ KEK Tokai

Yukawa Institute for Theoretical Physics (Kyoto U)

Yuki Kamiya

Collaborator Tetsuo Hyodo

- sIntroduction ~compositeness of bound state~
- Extension to the quasi-bound state
- \blacksquare Applications to exotic hadrons $\sim \Lambda(1405), a_0(980), f_0(980) \sim$
- Conclusions

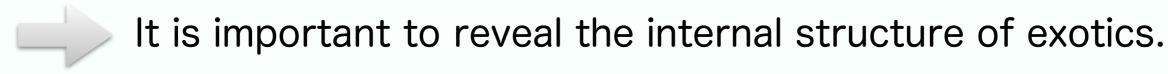
Introduction ~exotic hadrons~

Exotic hadrons

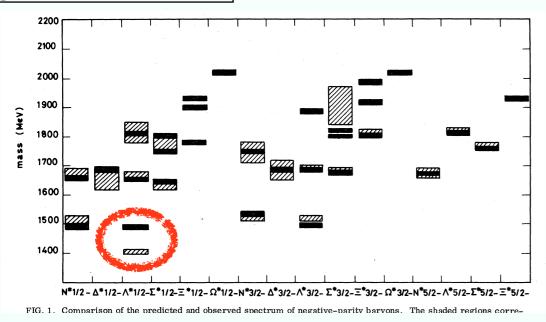
Hadrons which do not coincide with the predictions of the quark model.

More complicated internal structure can be expected.

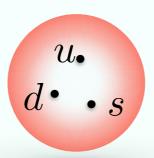
- tetra quark, penta quark
- hadron molecule …



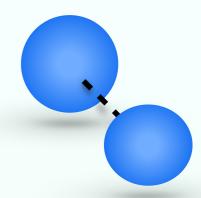
e.g.; $\Lambda(1405)$



exited Λ state(uds)



 $ar{K}N$ bound state



N. Isgur, and G. Karl, Phys. Rev. D18, 4187 (1978)

Compositeness of bound state

Previous work

Introduced to study deuteron by Weinberg.

S. Weinberg, Phys. Rev. 137, B672 (1965)

Condition

- weakly bound
- stable state
- s-wave

Output

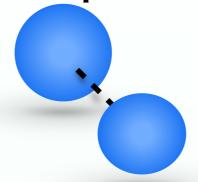
- X ; weight of composite state (0 < X < 1)
- Z ;wave function renormalization (0 < Z < 1)
- a₀ ;scattering length
- B ; binding energy

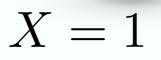
$$R = \frac{1}{\sqrt{2\mu B}}$$

(μ ;reduced mass of scat. state)

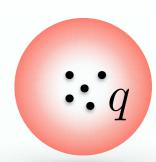
Composite

Elementary





$$Z = 0$$



$$X = 0$$

$$Z=1$$

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(R_{\text{typ}}/R\right) \right\}$$

typical length scale

We can extract the information of the internal structure using experimental observables.

- Introduction ~compositeness of bound state~
- Extension to the quasi-bound state
- \blacksquare Applications to exotic hadrons $\sim \Lambda(1405), a_0(980), f_0(980) \sim$
- Conclusions

Extension to the quasi-bound state.

System

Two channel scattering

- scattering channel $|m{p}
 angle$
- decay channel $|m{p}'
 angle$
- $|m{p}
 angle$ can decay to $|m{p}'
 angle$.

Unstable quasi-bound state $|QB\rangle$ exists near $|{m p}\rangle$ threshold.

The interaction has a typical length scale $R_{
m typ}$.

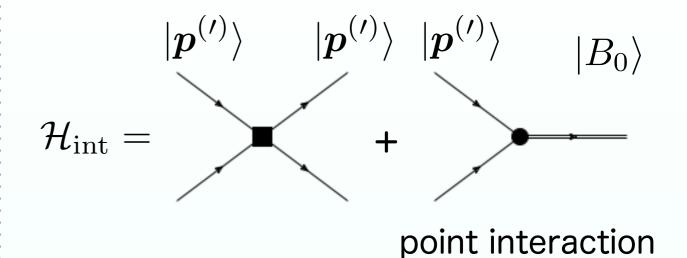
Effective field theory

To discuss the near-threshold physics, we use following non-relativistic EFT.

Free field $H_{\rm free}$ eigenstate

- $|oldsymbol{p}
 angle$ scattering channel
- $|B_0\rangle$ discrete channel
- $|oldsymbol{p}'
 angle$ decay channel

Interaction



Eigenstate

$$H=H_{
m free}+H_{
m int}$$

$$H|QB\rangle=E_{QB}|QB\rangle$$

$$E_{QB}=-B-i\Gamma/2 \ {
m ; \ complex}$$

We consider the compositeness of $|p\rangle$ channel ;X.

Extension to the quasi-bound state.

Definition of compositeness

Bound state

Bound state $|B\rangle$ is normalized with $\langle B|B\rangle=1$

•
$$X + Z = 1$$

•
$$0 < X, Z < 1$$

$$X \equiv \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \langle B | \mathbf{p} \rangle \langle \mathbf{p} | B \rangle$$

$$= \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2$$

The probabilistic interpretation is guaranteed for X and Z.

Quasi-bound state

To normalize unstable state,

we introduce Gamow state $|\overline{QB}\rangle$.

Normalization condition becomes

$$\langle \overline{QB}|QB\rangle = \langle QB^*|QB\rangle = 1.$$

T. Berggren, Nucl. Phys. A 109 (1968)

The expectation value of the any operator becomes complex number.

$$\bullet X + Z = 1$$

The probabilistic interpretation is not guaranteed!

Extension to the quasi-bound state.

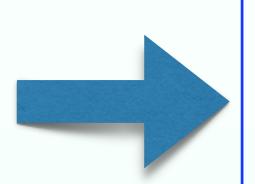
Y. Kamiya and T. Hyodo, arXiv:1509.00146 [hep-ph].

accepted in Phys. Rev. C

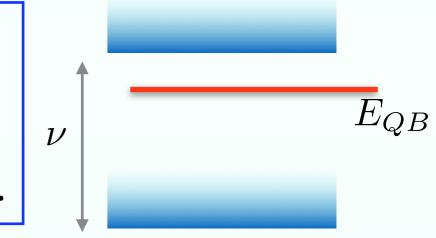
 \blacksquare Assuming $|E_{QB}|$ is small, we expand a_0 with respect to 1/R.

$$a_0 = R \left[\frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\mathrm{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{l}{R} \right|^3 \right) \right]$$
 original new

$$R = \frac{1}{\sqrt{-2\mu E_{QB}}}$$
$$l = \frac{1}{\sqrt{2\mu\nu}}$$



If $|R_{\mathrm{typ}}/R|$ and $|l/R|^3$ are sufficiently smaller than 1, we can extract X from a_0 and E_{OB} .



- Solution
 - a_0 , E_{QB} , \mathbf{X} are all complex numbers, then above relation is established among them.
 - If the the contribution of decaying mode is neglected, the compositeness relation is same to the one for bound state.
 - The same argument is valid for the case with $\mathrm{Re}\ E_h>0$.

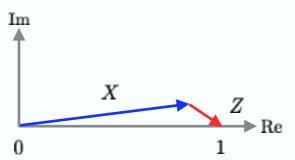
Interpretation of X

Interpretation of the complex compositeness

- There is no common interpretation of the complex X.
- (1) close to bound state case

$$\begin{cases} X = 0.8 + 0.1i \\ Z = 0.2 - 0.1i \end{cases}$$

small cancellation in X+Z



bound state case

$$\begin{cases} X = 0.8 \\ Z = 0.2 \end{cases}$$

probabilistic interpretation is available

(2-a) When real part is not in [0,1]

$$\begin{cases} X = 1.9 + 0.2i \\ Z = -0.9 - 0.2i \end{cases}$$

Im

X

Re

(2-b) When imaginary part is large.

 $\begin{cases} X = 0.9 + 0.8i \\ Z = 0.1 - 0.8i \end{cases}$

large cancellation in X+Z

When the cancelation is small, we can interpret the complex compositeness.

Interpretation of X

Our proposal

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

For probabilistic interpretation we define the following real quantities.

 \tilde{X} ; probability to find the scattering state in physical state

 \tilde{Z} ; probability to find the other states

U; degree of uncertainty of the interpretation

conditions:

$$\bullet \tilde{X} + \tilde{Z} = 1$$

•
$$0 \le \tilde{X}, \tilde{Z} \le 1$$

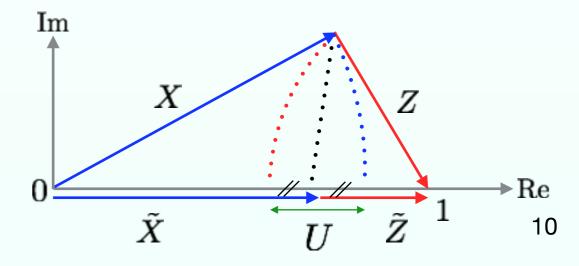
When the cancellation is 0,

$$\tilde{X}=X, \tilde{Z}=Z, U=0$$
 .

ullet U becomes large when the cancellation becomes large.

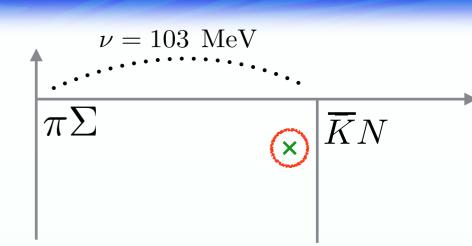
If U is small, we interpret \tilde{X} as the probability.

$$ilde{X} \equiv rac{1 - |Z| + |X|}{2}$$
 $ilde{Z} \equiv rac{1 - |X| + |Z|}{2}$
 $ilde{U} \equiv |Z| + |X| - 1$

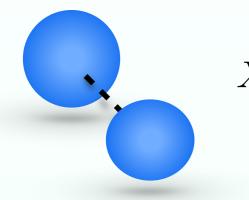


- Introduction ~compositeness of bound state~
- Extension to the quasi-bound state
- \blacksquare Applications to exotic hadrons $\sim \Lambda(1405), a_0(980), f_0(980) \sim$
- Conclusions

$$J^P = \frac{1}{2}^-$$



$\bar{K}N$ molecule?

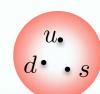


or

other components?

$$\tilde{X} = 0$$

e.g.



- Λ excited states(uds)
- penta-quark state

Rtyp is estimated from rho meson exchange int. $(R_{\rm typ} \sim 0.25 {\rm fm})$

l is estimated from difference of the threshold energy

$$a_0 = R\left[\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right] \qquad X = \frac{a_0}{2R - a_0}$$

$$\left|\frac{l}{R}\right|^3 \lesssim 0.14$$

$$R = \frac{1}{\sqrt{-2\mu E_{QB}}}$$
$$l = \frac{1}{\sqrt{2\mu\nu}}$$

$$X = \frac{a_0}{2R - a_0}$$

$$ilde{X}, U$$

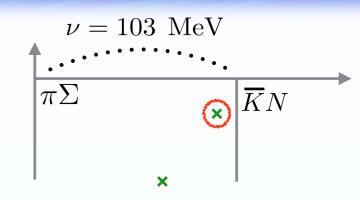
We use E_{QB} and a_0 in the following papers.

(1) Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012)

(2) M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)

(3) Z. H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013)

(4)M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).

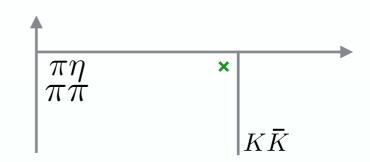


Ref.	$E_{QB} \ m (MeV)$	$a_0 \ (\mathrm{fm})$	X	$ ilde{X}$	U
(1)	-10-i26	1.39-i0.85	1.3+i0.1	1.0	0.5
(2)	-4-i8	1.81-i0.92	0.6+i0.1	0.6	0.0
(3)	-13-i20	1.30-i0.85	0.9-i0.2	0.9	0.1
(4)-1	2-i10	1.21-i1.47	0.6+i0.0	0.6	0.0
(4)-2	- 3-i12	1.52-i1.85	1.0+i0.5	0.8	0.6

- U is small enough. $\longrightarrow \tilde{X}$ can be considered as the probability.
- • \tilde{X} is close to 1.

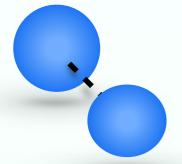
 $\Lambda(1405)$: $\overline{K}N$ composite dominance

 $a_0(980), f_0(980)$ ($K\bar{K}$ scattering) $(I=1) \qquad (I=0)$ $J^{PC} = 0^{++}$



$K\overline{K}$ molecule?

J. D. Weinstein and N. Isgur, PRD 41 (1990)



$$\tilde{X} = 1$$

other components? e.g.

$$\tilde{X} = 0$$

- $ilde{X}=0$ tetra quark state $ilde{q}$ meson state

$$\left| \frac{R_{\mathrm{typ}}}{R} \right| \lesssim 0.17 \qquad \left| \frac{l}{R} \right|^{3} \lesssim 0.04$$

$$a_0 = R\left[\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right] \qquad X = \frac{a_0}{2R - a_0} \qquad \tilde{X}, U$$

can be neglected

 $a_0(980)$ in $K\overline{K}$ scattering

We determine E_{QB} and a_0 from

Flatte parameters which are obtained experimental analysis.

c. f.: V. Baru et al. Phys. Lett. B 586, 53 (2004)

T. Sekihara and S. Kumano, Phys. Rev. D 92, 034010 (2015)

- (1) G. S. Adams et al. [CLEO Collaboration], Phys. Rev. D 84, 112009 (2011)
- (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 681, 5 (2009)
- (3) D. V. Bugg, Phys. Rev. D 78, 074023 (2008)
- (4) S. Teige et al. [E852 Collaboration], Phys. Rev. D 59, 012001 (1999)

Set	E_{QB} (MeV)	a_0 (fm)	X	$ ilde{X}$	U
(1)	31-i70	-0.03-i0.53	0.2-i0.2	0.3	0.1
(2)	3-i25	0.17-i0.77	0.2-i0.2	0.2	0.1
(3)	9-i36	0.05-i0.63	0.2-i0.2	0.2	0.1
(4)	15-i29	-0.13-i0.52	0.1-i0.4	0.1	0.1

- U is small enough. $\longrightarrow \tilde{X}$ can be considered as the probability.
- • \tilde{X} is close to 0.

 $a_0(980)$: small $K\bar{K}$ fraction

 $f_0(980)$ in $K\overline{K}$ scattering We determine E_{QB} and a_0 from Flatte parameters which are obtained experimental analysis.

c. f. T. Sekihara and S. Kumano, Phys. Rev. D 92, no. 3, 034010 (2015)

- (1) T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 84, 052012 (2011)
- (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 634, 148 (2006)
- (3) A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006)
- (4) M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607, 243 (2005)
- (5) J. M. Link et al. [FOCUS Collaboration], Phys. Lett. B 610, 225 (2005)

(6) M. N. Achasov et al., Phys. Lett. B 485, 349 (2000)

Ref.	$E_{QB} \ (\mathrm{MeV})$	a_0 (fm)	X	$ ilde{X}$	U
(1)	19-i30	0.02-i0.95	0.3-0.3	0.4	0.2
(2)	-6 -i10	0.84-i0.85	0.3-i0.1	0.3	0.0
(3)	-8 -i28	0.64-i0.83	0.4-i0.2	0.4	0.1
(4)	10-i18	0.51-i1.58	0.7-i0.3	0.6	0.1
(5)	-10-i29	0.49-i0.67	0.3-i0.1	0.3	0.0
(6)	10-i7	0.52-i2.41	0.9-i0.2	0.9	0.1

- U is small enough. $\longrightarrow X$ can be considered as the probability.
- Values of \tilde{X} are not consistent.

More precise analysis is needed.

- Introduction ~compositeness of bound state~
- Extension to the quasi-bound state
- \blacksquare Applications to exotic hadrons $\sim \Lambda(1405), a_0(980), f_0(980) \sim$
- **S**Conclusions

Conclusions

Conclusions

Y. Kamiya and T. Hyodo, arXiv:1509.00146 [hep-ph].

accepted in Phys. Rev. C

• We extend the weak-binding relation to quasi-bound states.

$$a_0 = R \left\{ rac{2X}{1+X} + \mathcal{O}\left(|R_{\mathrm{typ}}/R|
ight) + \mathcal{O}\left(|l/R|^3
ight)
ight\}$$

If the absolute value of the eigenenergy is small enough, the compositeness is model-independently determined only from observables.

• We construct interpretation of complex X.

$$\tilde{X} \equiv \frac{1 - |Z| + |X|}{2}, \quad U \equiv |X| + |Z| - 1$$

If the uncertainty U is small, we interpret \tilde{X} as the probability.

We apply the method to exotic hadrons and discuss the internal structures.

 $\Lambda(1405)$: $\bar{K}N$ composite dominance

 $a_0(980)$: not $K\bar{K}$ dominance