J-PARC hadron physics in 2016

Open charm production in exclusive reactions at PANDA-FAIR and J-PARC energy region Alexander Titov

Bogoliubov Lab. of Theoretical Physics, JINR Dubna, Russia and

RCNP, Osaka University, Japan

with Burkhard Kämpfer

Helmholtz Zentrum-Dresden-Rossendorf, Germany

and Atsushi Hosaka

RCNP, Osaka University, Japan/KEK

The aim of our discussion is qualitative/quantitative estimation of open charm production in $\bar{p}p$ reactions with one flavor exchange

$$ar p p o ar \Lambda \Lambda(\Sigma)$$
 and $ar p p o ar \Lambda_c \Lambda_c(\Sigma_c)...$ $ar p p o ar K K$ and $ar p p o Dar D...$ (PANDA) $ar p p o ar K K^*$ and $ar p p o Dar D^*...$

and reactions with two flavor exchange

$$\bar{p}p \to \bar{\Xi}\Xi$$
 and $\bar{p}p \to \bar{\Xi}_c\Xi_c$

open charm production in πp reactions

$$\pi^- p \to D^{*-} \Lambda_c$$

(J-PARC)

also in pp reactions, like

$$pp \to \Lambda_c \bar{D}^o p$$
 and $pp \to \Lambda_c \bar{D}^o X$

mainly in forward production (large x)

Charmed and strange hadrons

$$c\bar{u} \ (D^{0}) \ (1864) \ \text{or} \ (D^{*0}) (2007) \qquad \to s\bar{u} \ (K^{-}) \ (494) \ \text{or} \ (K^{*-})$$
 $c\bar{d} \ (D^{+}) \ (1869) \ \text{or} \ (D^{*+}) (2010) \qquad \to s\bar{d} \ (\bar{K}^{0}) \ (498) \ \text{or} \ (\bar{K}^{*0})$
 $c\bar{c} \ (J/\psi) \ (3096) \qquad \to s\bar{s} \ (\phi) \ (1020)$
 $c\bar{c} \ (D^{0}) \ (1864) \ \text{or} \ (\bar{D}^{*0}) \qquad \to \bar{s} u \ (K^{+}) \ (494) \ \text{or} \ (\bar{K}^{*+})$
 $c\bar{c} \ (D^{-}) \ (1869) \ \text{or} \ (D^{*-}) \qquad \to \bar{s} d \ (K^{0}) \ (498) \ \text{or} \ (K^{*0})$

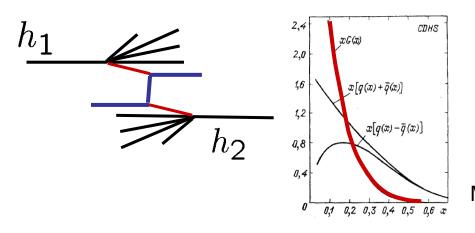
$$cuu \ (\Sigma_{c}^{++}) \ (2452) \qquad \to suu \ (\Sigma^{+})$$
 $cud \ (\Lambda_{c}^{+}) \ (2286) \ \text{or} \ (\Sigma_{c}^{+}) \ (2451) \qquad \to sud \ (\Lambda) \ \text{or} \ (\Sigma^{0})$
 $cdd \ (\Sigma_{c}^{0}) \ (2452) \qquad \to sdd \ (\Sigma^{-})$

$$csu\ (\Xi_c^+)\ (2467) \qquad \to ssu\ (\Xi^0)\ (1315)$$

 $csd\ (\Xi_c^0)\ (2470) \qquad \to ssd\ (\Xi^-)\ (1322)$

Challenges of some utilized models

Open charm at high energy and pQCD models



$$d\sigma_{H_c} \sim xG(x)$$

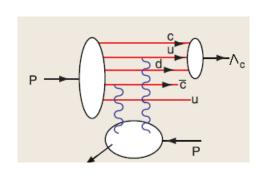
$$xG(x)|_{x
ightarrow 1} \sim (1-x)^5$$
 with $x \simeq 1$

M. Basile et al., Lett. Nuovo Cim. 30, 487 (1981)

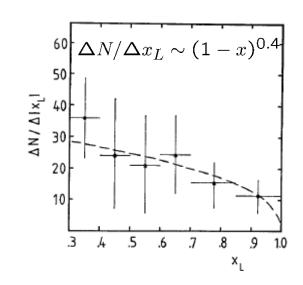
$$p + p \rightarrow \Lambda_c + X$$
, $\sqrt{s} = 62 \text{GeV}$

"Intrinsic charm model"

Brodsky et al, PLB93 (1980)



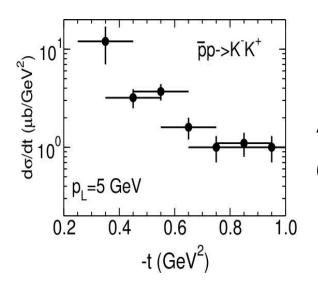
 \sim 1% $[car{c}]$ in proton



Effective Lagrangian Models

Heidenbauer, Krein et al., (1993-2015) $\bar{p}p \to \bar{Y}Y$: $\bar{p}p \to \bar{M}M$ Shyam&Lenske,(2015) $\bar{p}p \to \bar{M}M$

Example: $\bar{p}p \to K^-K^+$



A. Eide *et al.*, Nucl. Phys. **B**60,173 (1973) (LEAR)

Definite enhancement at forward production angles encourage for t-exchange channels

$$\frac{\bar{p}}{N}$$
 $\frac{\bar{K}}{p}$

$$\begin{pmatrix} \bar{p} & D \\ \hline & \Lambda_c \\ \hline p & \bar{D} \end{pmatrix}$$

$$\mathcal{L}_{NYK} = -i\bar{N} \gamma_5 YK + \text{h.c.}$$
,

$$\mathcal{L}_{NYD} = -i \bar{N} \bar{D} \gamma_5 Y_c + \text{h.c.} \; ,$$

Amplitude and cross sections

$$\frac{\bar{p}}{\bigwedge} \frac{\bar{K}}{\bigwedge} \mathcal{L}_{NYK} = -i g_{KNY} \bar{N} \gamma_5 Y K + \text{h.c.} ,$$

$$A_{m_i n_i}^{\bar{p}p \to \bar{K}K}(s,t) = \frac{\bar{v}_{n_i} \left(p_Y \cdot \gamma - M_Y\right) u_{m_i}}{t - M^2} g_{KNY}^2 f^2(t)$$

$$f(t) = form factor$$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi s(s - 4M_N^2)} \mathrm{Tr}[AA^\dagger]; \qquad \sigma_{\mathrm{tot}} = \frac{1}{32\pi s} \frac{p_f}{p_i} \int_{-1}^1 d\cos\theta \, \mathrm{Tr}[AA^\dagger]$$

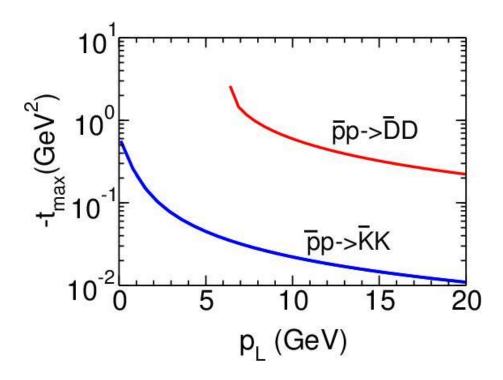
$$Tr[AA^{\dagger}] = \frac{g_{KNY}^4 f^4(t)}{(t - M_V^2)^2} F^2(s, t)$$

$$F^{2}(s,t) = \frac{1}{2} \left((s - 2M_{N}^{2})(M_{Y}^{2} - t) + 4M_{N}M_{Y}(M_{N}^{2} + M_{K}^{2} + t) - (M_{N}^{2} - M_{K}^{2} + t)^{2} - M_{N}^{2}(M_{Y}^{2} + t) \right) ,$$

Kinematics: momentum transfers

$$t = 2M_p^2 - 2E_p E_K + 2p_p p_K \cos \theta$$

$$-t_{\text{max}} \equiv |-t|_{\text{max}} = -2M_p^2 + 2E_p E_K - 2p_p p_K$$



$$\frac{d\sigma(\bar{D}D)}{dt} \ll \frac{d\sigma(\bar{K}K)}{dt}$$

$$\sigma_{\rm tot} \propto {\rm Tr}[AA^{\dagger}] = \frac{1}{s} \frac{g_{KNY}^4 f^4(t)}{(t - M_V^2)^2} F^2(s, t)$$

$$F^{2}(s,t) = \frac{1}{2} \left((s - 2M_{N}^{2})(M_{Y}^{2} - t) + 4M_{N}M_{Y}(M_{N}^{2} + M_{K}^{2} + t) - (M_{N}^{2} - M_{K}^{2} + t)^{2} - M_{N}^{2}(M_{Y}^{2} + t) \right) ,$$

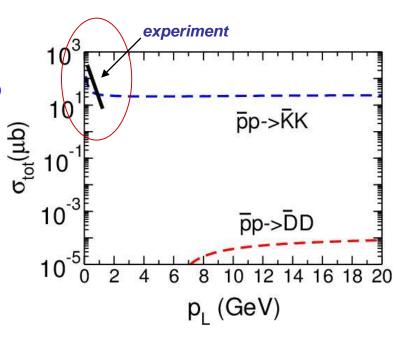
 $\sigma_{
m tot} pprox {
m Constant}$ at $s \ll M_i^2, |t|$

experiment

$$\sigma_{
m tot} pprox C \left(rac{s}{s_0}
ight)^{-\gamma} \ {
m with} \ \gamma \gg 1$$

$$\frac{\sigma_{\bar{D}D}}{\sigma_{\bar{K}K}} \le 10^{-5}$$

→ Limited region of application



→ Wrong energy dependence

Contrary to the hadron-exchange models, Regge approaches are work satisfactorily for strangeness production

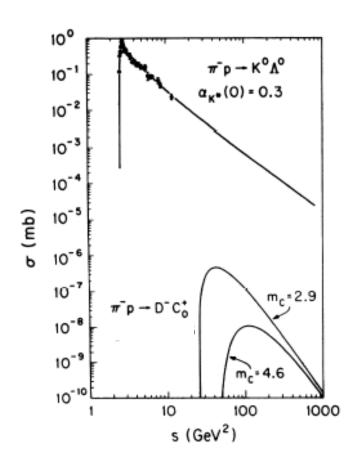
Similarity of $\ ar p p o ar K K$ and $\ ar p p o D D$ motivates for utilizing the Regge models for charm production



(1) trajectories $\alpha(t)$ non-linear?

Chew-Frautschi plot

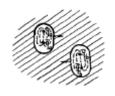
(2) what is a value of scale parameters $s_{\mathcal{R}}$



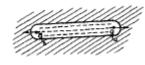
$$\frac{\text{charm}}{\text{strangeness}} < 10^{-6}...\,10^{-7}$$

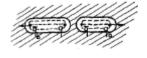
V. Barger, R.Phillips, PRD 12 (1975)

Possible solution is an approach based on non-perturbative quark-gluon string model discussed for the firrst time by S.Nussinov, (PRL34(1975) and F.Low ,PRD12 (1975)) Essentially, they discussed formation and decay of a $q\bar{q}$ color tube

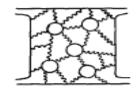


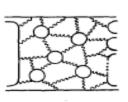


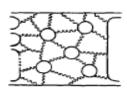




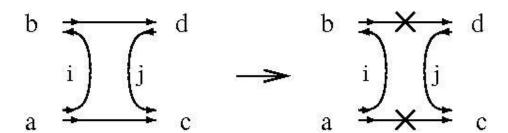
with complicated intermediate (multi-particle) states





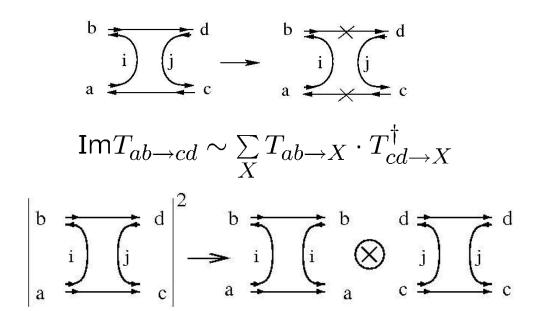


The method of evaluation of observables based on utilizing the planar diagram for two body amplitude and it's cutting In s-channel



was elaborated by Kaidalov (almost 10 years later) [Z.Phys. C **12** (1982)] and developed by Kaidalov et al. (in 1983-2005) and other groups: A.T., Kampfer(2008), A.Khojiamirian et al.(2012), G.Lykasov et al.(2010)... V. Grishina et al.(2005)(strangeness), Kim, Hosaka & et al., (2015)

(In particularly for two-body exclusive processes!!)



$$w_{ab \to cd}^2 \sim w_{ab \to ab} \times w_{cd \to cd}$$

probabilities of elastic scattering

required b diagram i looks like "Regge trajectory" with an effective "ij" Reggeon (amplitude) c

The main advantage of Kaidalov's approach based on

(i) factorization:

$$\begin{vmatrix} b & & \\ & i & \\ & a & \end{vmatrix}^2 \rightarrow \begin{vmatrix} b & & \\ & i & \\ & a & \end{vmatrix} \begin{vmatrix} b & & \\ & & \\ & & a & \\ & & & \end{vmatrix} \begin{vmatrix} b & & \\ & & \\ & & & \\ & & & \end{vmatrix} \begin{vmatrix} d & & \\ & & \\ &$$

(ii) Regge type of the individual and the "required amplitude":

$$A_{ij} \sim \Gamma(1 - \alpha_{ij}(t)) \left(-\frac{s}{s_{ij}}\right)^{\alpha_{ij}(t) - 1}$$

is a derivation of the consistent equations for $\ lpha_{ij}(t)$ and s_{ij} :

A.Kaidalov, Z.Phys.C12, 62 (1982)

$$(1) 2\alpha_{\overline{i}j}(0) = \alpha_{\overline{i}i}(0) + \alpha_{\overline{j}j}(0) ,$$

(2)
$$2/\alpha'_{ij} = 1/\alpha'_{ii} + 1/\alpha'_{jj}$$
, and

(3)
$$(s_{ab:cd})^{2(\alpha_{ij}-1)} = (s_{ab})^{\alpha_{ii}(0)-1} \times (s_{cd})^{\alpha_{jj}(0)-1}$$

$$s_{ab} = \left(\sum_i^{n_a} M_{i\perp}
ight) \left(\sum_j^{n_b} M_{j\perp}
ight) \quad {
m with} \quad rac{M_{u,d\perp} \simeq 0.5 \, {
m GeV}, \, M_{s\perp} \simeq 0.6 \, {
m GeV},}{M_{c\perp} \simeq 1.6 \, {
m GeV}}$$

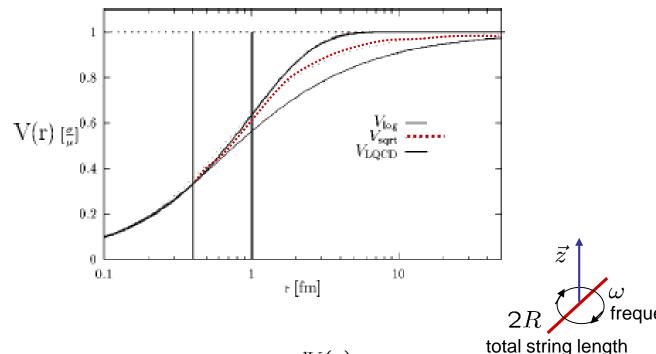
Example: $\pi^- p \to D^- \Lambda_c$

$$\begin{vmatrix} \pi^{\stackrel{d}{\overset{d}}} & \xrightarrow{c}^{\overset{d}{\overset{d}}} D^{-} \end{vmatrix}^2 \xrightarrow{c}^{\overset{d}{\overset{d}{\overset{d}}}} \xrightarrow{c}^{\overset{d}{\overset{d}}} A_c \begin{vmatrix} \pi^{-} & \Phi^{\stackrel{d}{\overset{d}}} & \Phi^{$$

$$w_{\pi p \to D^- \Lambda_c}^2 \sim w_{\pi^- p \to \pi^- p} \times w_{D^- \Lambda_c \to D^- \Lambda_c}$$

 $\left[\rho\left(q\overline{q}\right)\right]$ trajectory $J/\psi\left(c\overline{c}\right)$ trajectory $J/\psi\left(c\overline{c}\right)$

Non-linear trajectory reflects behavior of QCD motivated ar q q potential V(ho)



string tension
$$\sigma(\rho) = \frac{dV(\rho)}{d\rho}$$

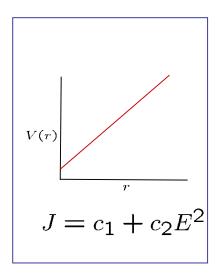
$$E = 2 \int_{0}^{R} \frac{d\rho\sigma(\rho)}{\sqrt{1 - (\rho\omega)^{2}}}; \qquad J = 2 \int_{0}^{R} \frac{d\rho\sigma(\rho)\rho^{2}\omega}{\sqrt{1 - (\rho\omega)^{2}}},$$

$$J = 2 \int_{0}^{\pi} \frac{d\rho\sigma(\rho)\rho^{2}\omega}{\sqrt{1 - (\rho\omega)^{2}}}$$

string energy

string spin momentum

$$V(\rho) = \frac{a}{\pi \mu} \arctan(\pi \mu \rho) \longrightarrow J = \frac{1}{\pi \mu} (a/\sigma) - \sqrt{(a/\sigma) - E^2}$$



Non-linear Regge trajectories for diagonal channels in a square root form

Brisudova, Burakovsky, and Goldman PRD 61, (2000).

$$\alpha(t) = \alpha(0) + \gamma(\sqrt{T} - \sqrt{T - t})$$
 with $T \gg 1 \mathrm{GeV}^2$

In the diffractive region with $-t \ll T$,

$$\alpha(t) \simeq \alpha(0) + \frac{\gamma t}{2\sqrt{T}} \simeq \alpha(0) + \alpha' t$$

$$\alpha' = \gamma/2\sqrt{T}$$

where $\gamma = 3.65 \text{ GeV}^{-1} \longleftrightarrow \text{ from } \alpha_{\rho}(t)$

$$\alpha_{\rho},~M_{K^*},~M_{K_3^*},~M_{J/\psi},M_{D^*}$$
 are taken as input

non-linear

 α

$$\alpha_{\rho}(0) = 0.55, \qquad \sqrt{T_{\rho}} = 2.46 \text{ GeV}, \qquad \alpha'_{\rho} \simeq 0.742 \text{ GeV}^{-2},$$

$$\alpha_{K^*}(0) = 0.414, \qquad \sqrt{T_{K^*}} = 2.58 \text{ GeV}, \qquad \alpha'_{K^*} \simeq 0.71 \text{ GeV}^{-2},$$

$$\alpha_{\phi}(0) = 0.28, \qquad \sqrt{T_{\phi}} \simeq 2.70 \text{ GeV}, \qquad \alpha'_{\phi} \simeq 0.676 \text{ GeV}^{-2},$$

$$\alpha_{D^*}(0) = -1.02, \qquad \sqrt{T_{D^*}} = 3.91 \text{ GeV}, \qquad \alpha'_{D^*} \simeq 0.467 \text{ GeV}^{-2},$$

$$\alpha_{J/\psi}(0) = -2.60, \qquad \sqrt{T_{J/\psi}} \simeq 5.36 \text{ GeV}, \qquad \alpha'_{J/\psi} \simeq 0.34 \text{ GeV}^{-2},$$

$$s_{\bar{p}p:\bar{\Lambda}_c\Lambda_c} \simeq 5.98 \text{ GeV}^2.$$

$$\alpha_{dc}(0) \simeq -2.09, \qquad \alpha'_{dc} \simeq 0.557 \text{ GeV}^{-2},$$

$$s_{\bar{p}p:D\bar{D}} \simeq 3.59 \text{ GeV}^2.$$

Reaction $\bar{p}p \to \bar{Y}Y$, $Y = \Lambda, \Sigma, \Lambda_c, \Sigma_c...$

$$\begin{array}{ccc}
\overline{p} & \overline{\Lambda} \\
\hline
\mathcal{R}_{K^*} & \Gamma_{\mu}^{(p)} & = \overline{u}_{\Lambda} \left((1 + \kappa_{K^*N\Lambda}) \gamma_{\mu} - \kappa_{K^*N\Lambda} \frac{(p_p + p_{\Lambda})_{\mu}}{M_N + M_{\Lambda}}) \right) u_p , \\
\hline
p & \overline{\Lambda} & \Gamma_{\mu}^{(\bar{p})} & = \overline{v}_{\bar{p}} \left((1 + \kappa_{K^*N\Lambda}) \gamma_{\mu} + \kappa_{K^*N\Lambda} \frac{(p_{\bar{p}} + p_{\bar{\Lambda}})_{\mu}}{M_N + M_{\Lambda}}) \right) v_{\bar{\Lambda}} .
\end{array}$$

$$T_{m_f n_f; m_i, n_i}^{\bar{p}p \to \bar{\Lambda}\Lambda} = C(t) \frac{s g_{K^*N\Lambda}^2}{s_0} \Gamma(1 - \alpha_{\bar{s}q}(t)) \left(-\frac{s}{s_{\bar{p}p:\bar{\Lambda}\Lambda}} \right)^{\alpha_{\bar{s}q}(t) - 1} \mathcal{M}_{m_f n_f; m_i, n_i}^{\bar{p}p \to \bar{\Lambda}\Lambda}(s, t)$$

$$\mathcal{M}_{m_f n_f; m_i n_f}^{\bar{p}p \to \bar{\Lambda}\Lambda}(s,t) = \mathcal{N}(s,t) \Gamma_{m_f m_i}^{(p)\mu} \Gamma_{n_f n_i}^{(\bar{p})\nu} \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)$$

$$\mathcal{N}^2(s,t) = \frac{1}{F^2(s,t)},$$

$$F^2(s,t) = \operatorname{Tr}\left(\Gamma^{(p)\mu}\Gamma^{(p)\mu'^{\dagger}}\right) \operatorname{Tr}\left(\Gamma^{(\bar{p})\nu}\Gamma^{(\bar{p})\nu'^{\dagger}}\right) \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right) \left(g_{\mu'\nu'} - \frac{q_{\mu'}q_{\nu'}}{q^2}\right)$$

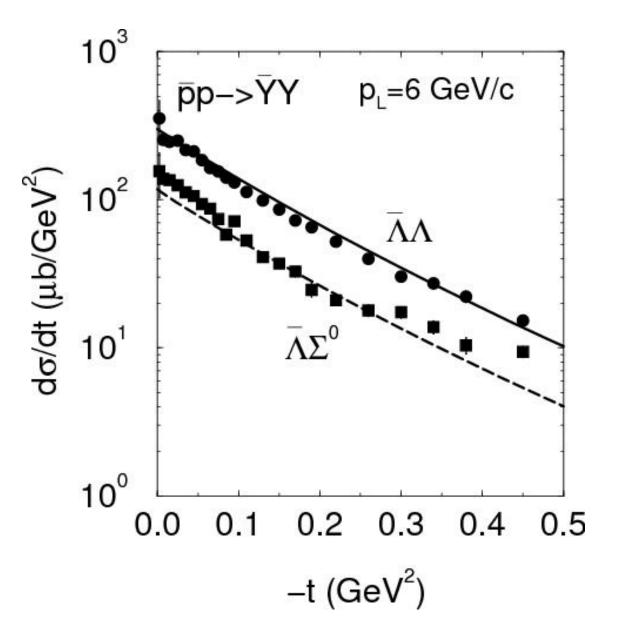
C(t) unknown residual function

 $g_{KNY}, g_{K^*NY}, \kappa_{K^*NY}$ - from hyper-nucleon physics(Nijmegen potential)

$$SU(4) \longrightarrow g_{DNY_c}(g_{D^*NY_c}) = g_{KNY}(g_{K^*NY})$$

Stoks & Rijken PRC, 59, 3009 ('99)

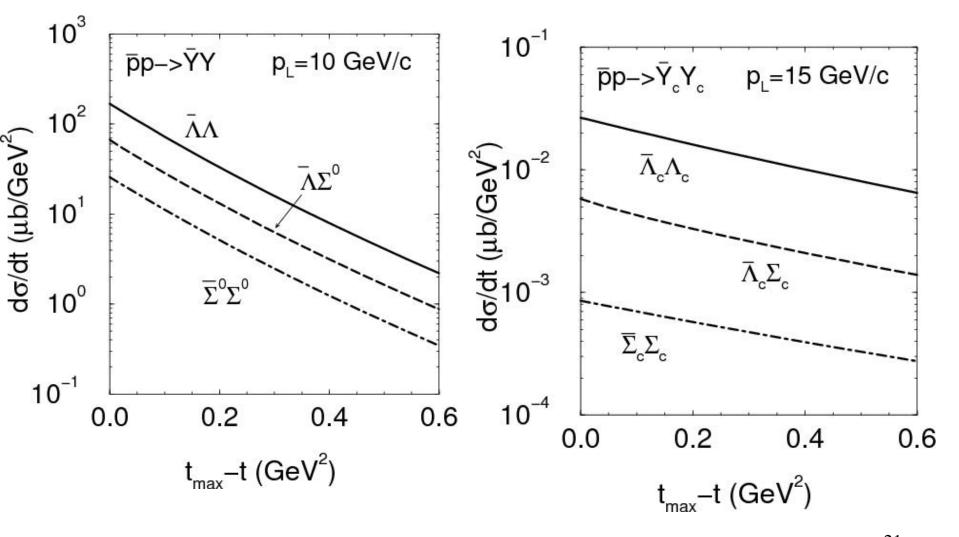
important note: for unpolarized case $\sum_{\text{spins}} \mathcal{M} \mathcal{M}^\dagger = 1$



$$C(t) = \frac{0.54}{(1 - t/1.15)^2}$$

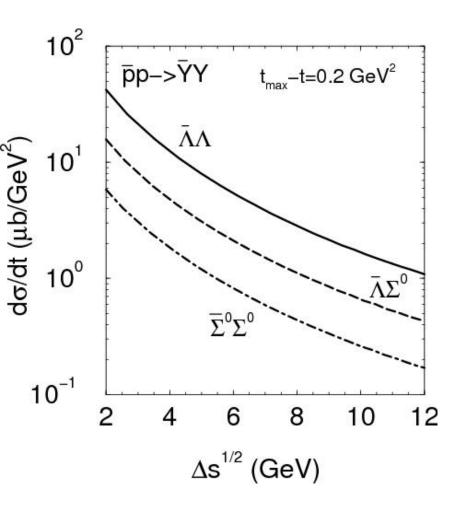
Reactions $\bar{p}p \to \bar{Y}Y$, $Y = \Lambda, \Sigma^o (\Lambda_c, \Sigma_c^o)$

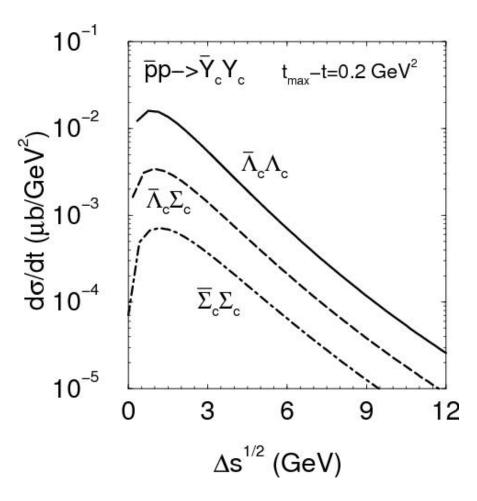
t - dependence



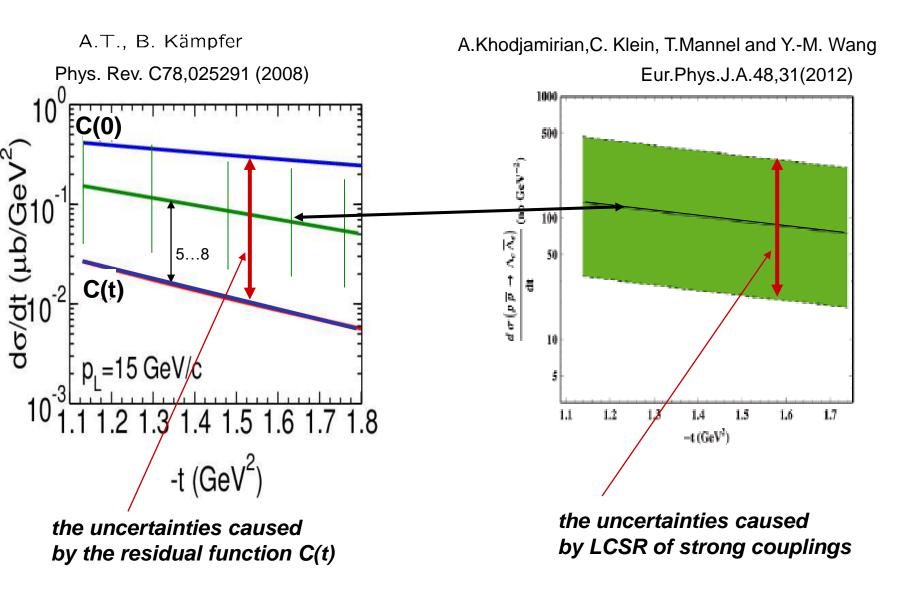
Reactions $\bar{p}p \to \bar{Y}Y$, $Y = \Lambda, \Sigma^o (\Lambda_c, \Sigma_c^o)$

energy dependence

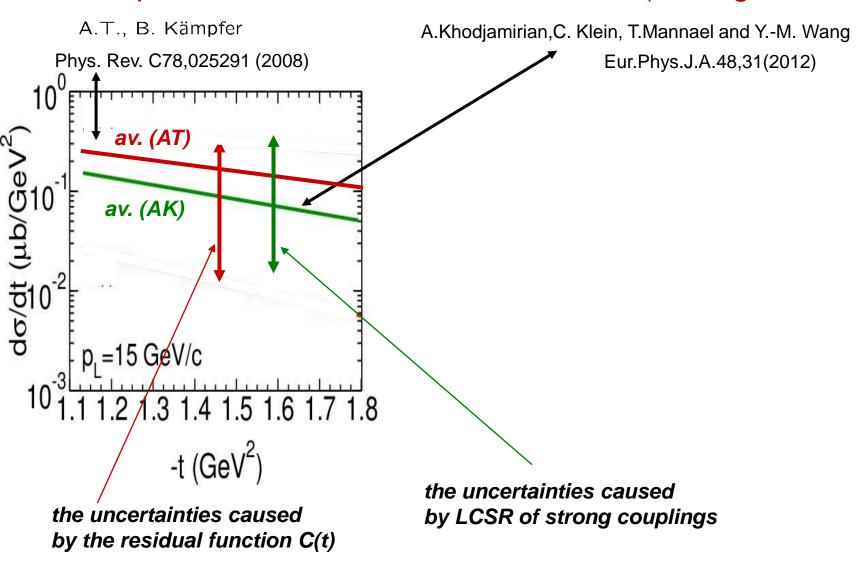




Comparison of two realization of QGSM for $\bar{p}p \rightarrow = \bar{\Lambda}_c \Lambda_c$



Comparison of two realization of QGSM (average values)



for the average values both predictions are consistent with each other within a factor of 2

Reaction $\bar{p}p \to \bar{K}K(D\bar{D})$

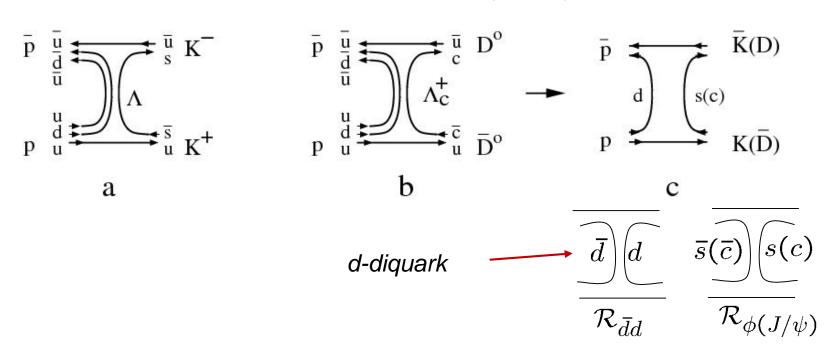
$$T_{m_{i},n_{i}}^{\bar{p}p\to\bar{K}K} = C'(t)\frac{g_{KN\Lambda}^{2}M_{Y}\sqrt{s}}{s_{0}}\Gamma(\frac{1}{2}-\alpha_{\bar{s}q}(t))\left(-\frac{s}{s_{\bar{p}p:\bar{\Lambda}\Lambda}}\right)^{\alpha_{\bar{s}q}(t)-\frac{1}{2}}\otimes \mathcal{M}_{m_{i};n_{i}}^{\bar{p}p\to\bar{K}K}(s,t)$$

$$\mathcal{M}_{m_i n_i}^{\bar{p}p \to \bar{K}K}(s,t) = \mathcal{N}(s,t) \left[\bar{v}_{n_i} (\not p_Y - M_Y) u_{m_i} \right] ,$$

$$\mathcal{N}^2(s,t) = \frac{1}{F^2(s,t)},$$

$$F^{2}(s,t) = \frac{1}{2} \left((s - 2M_{N}^{2})(M_{Y}^{2} - t) + 4M_{N}M_{Y}(M_{N}^{2} + M_{K}^{2} + t) - (M_{N}^{2} - M_{K}^{2} + t)^{2} - 2M_{N}^{2}(M_{Y}^{2} + t) \right)$$

Reaction $\bar{p}p \to \bar{K}K(D\bar{D})$



How to evaluate the di-quark trajectory?

$$2\alpha_{sd}(0) = \alpha_{\bar{s}s}(0) + \alpha_{\bar{d}d}(0) ,$$

$$2/\alpha'_{sd} = 1/\alpha'_{\bar{s}s} + 1/\alpha'_{\bar{d}d}$$

$$\alpha_{sd}(t) \equiv \alpha_{\Lambda}(t) = -0.65 + 0.94 t$$

is taken as input [cf. K.Storrow Phys. Rep. 103,135(1984)] then

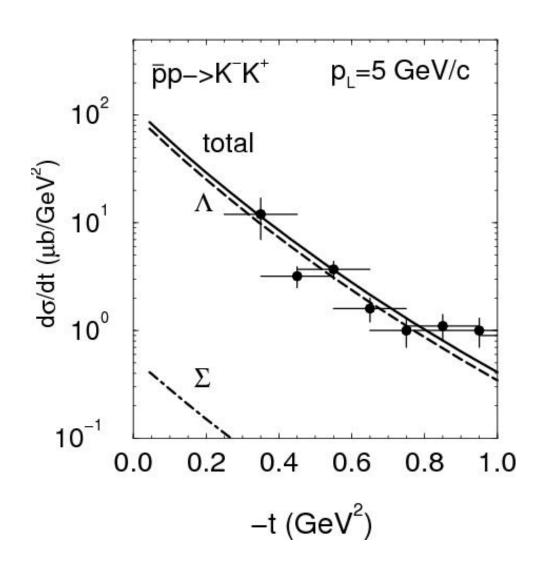
$$\alpha_{dd}(t) = -1.58 + 1.542 t$$

and allows to identify trajectory of Λ_c

$$2\alpha_{dc}(0) = \alpha_{\bar{d}d}(0) + \alpha_{\bar{c}c}(0) ,$$

$$2/\alpha'_{dc} = 1/\alpha'_{\bar{d}d} + 1/\alpha'_{\bar{c}c}$$

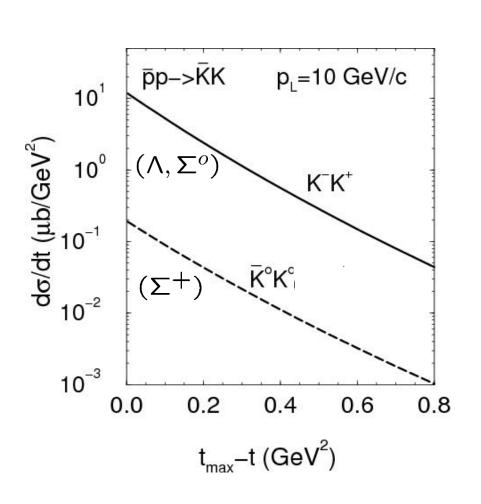
$$\alpha_{dc}(t) \equiv \alpha_{\Lambda c}(t) = -2.09 + 0.557 t$$

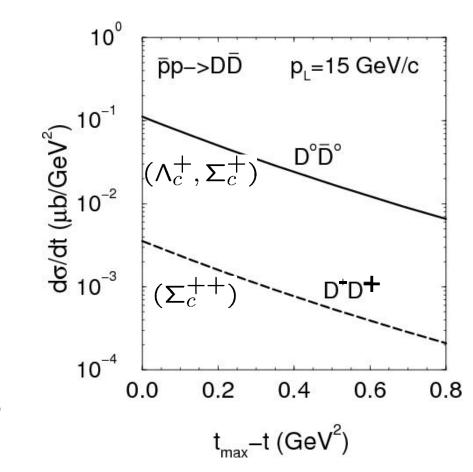


$$C'(t) = \frac{0.38}{(1 - t/1.15)^2}$$

Reactions $\bar{p}p \to \bar{K}K(D\bar{D})$

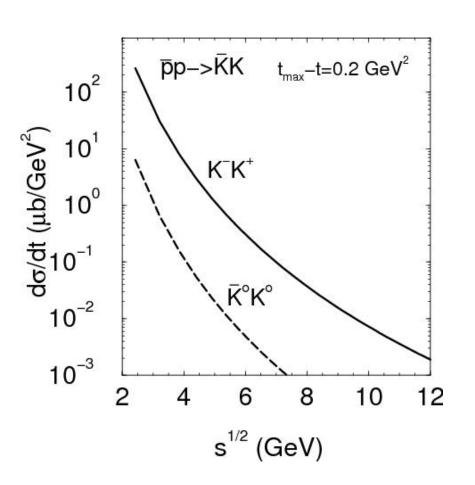
t-dependence

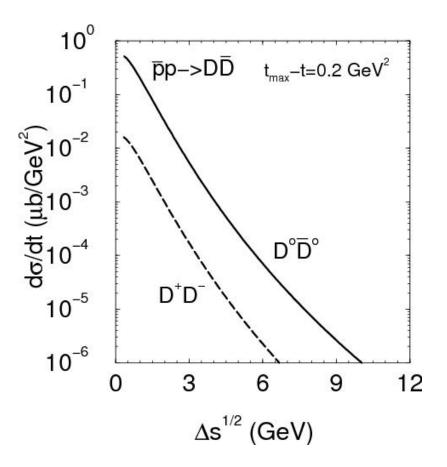




Reactions $\bar{p}p \to \bar{K}K(D\bar{D})$

s-dependence

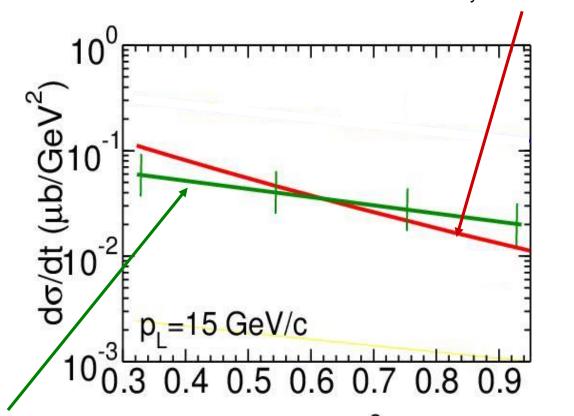




Comparison of two realization of QGSM for $\bar{p}p \to D\bar{D}$

A.T., B. Kämpfer

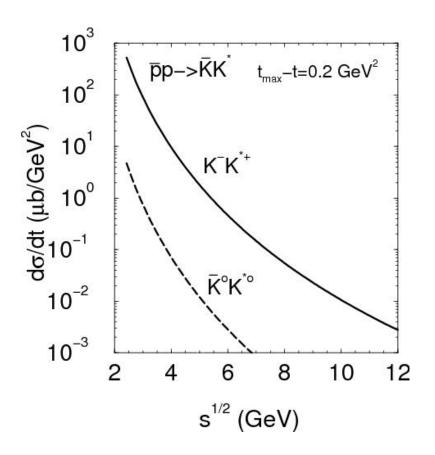
Phys. Rev. C78,025291 (2008)

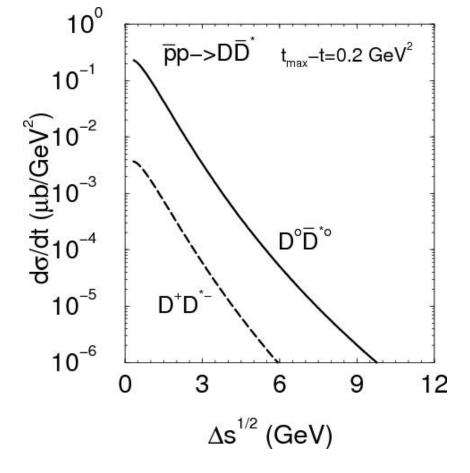


A. Khodjamirian, Ch. Klein, Th. Mannel, and Y.-M. Wang^a

Eur. Phys. J.A48, 31(2012)

Reaction $\bar{p}p \to \bar{K}K^*$



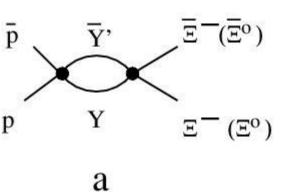


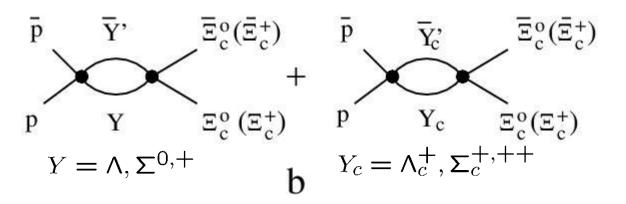
$$d\sigma^{KK^*} \simeq (2 \div 3) d\sigma^{KK}$$

$$\frac{charm}{strangeness} \sim 10^{-3}...10^{-4}...$$

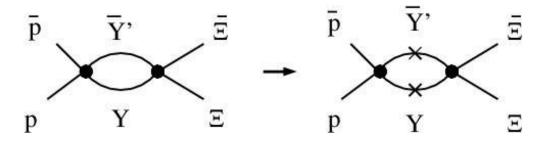
Double flavor exchange:

and $\bar{\Xi}_c \Xi_c$ in $\bar{p}p$ collisions





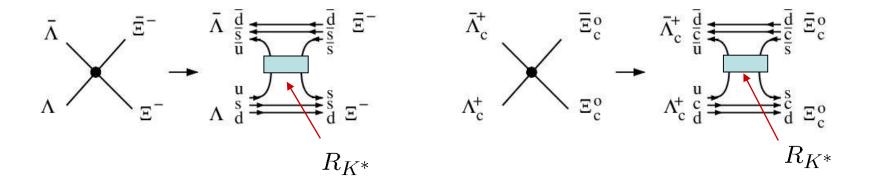
Cut (pole) diagrams



Cutkosky cutting rule

$$\begin{split} T^{\bar{p}p\to\bar{\Xi}\bar{\Xi}} &\simeq T_{\text{cut}}^{\bar{p}p\to\bar{\Xi}\bar{\Xi}} \\ &= -i\frac{\sqrt{1-4M_Y^2/s}}{16\pi} \int \frac{d\Omega_Y}{4\pi} \sum_{\text{spins }\bar{Y}'Y} T^{\bar{p}p\to\bar{Y}'Y} \, T^{\bar{Y}'Y\to\bar{\Xi}\bar{\Xi}} \end{split}$$

The vertex amplitudes: "effective region exchange"



The amplitude of $\bar{p}p \to \bar{Y}'Y \to \bar{\Xi}^0 \bar{\Xi}^0$ transition is a coherent sum with

$$\bar{Y}'Y = \bar{\Lambda}\Lambda$$
, $\bar{\Sigma}^0\Sigma^0$, $\bar{\Sigma}^+\Sigma^+$, $\bar{\Sigma}^0\Lambda$, $\bar{\Lambda}\Sigma^0$

intermediate states

SU(3) predicts

Tipp
$$= g_{\Lambda}^{4} \left(1 + \frac{1}{9} + \frac{4}{9} - \frac{2}{3}\right) T_{0} = \frac{8}{9} g_{\Lambda}^{4} T_{0}$$
 independent amplitude

 $g_{K^* \wedge \Xi^0} * g_{K^* \Sigma^0 \Xi^0} < 0$

for $\bar{p}p \to \bar{Y}'Y \to \bar{\Xi}^- \bar{\Xi}^-$, one has $\bar{Y}'Y = \bar{\Lambda}\Lambda$, $\bar{\Sigma}^0 \Sigma^0$, $\bar{\Sigma}^0 \Lambda$, $\bar{\Lambda} \Sigma^0$

$$[g_{K^* \wedge \Xi^-} * g_{K^* \Sigma^0 \Xi^-}] > 0$$

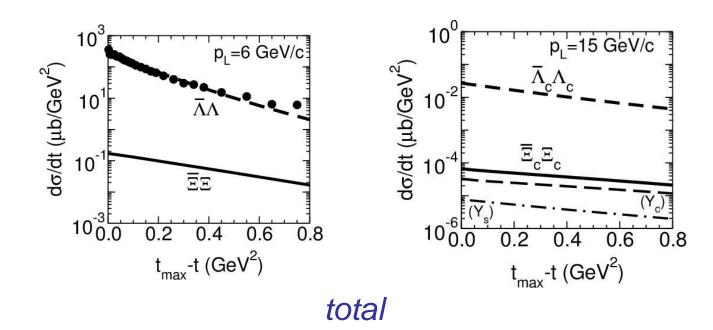
the ratio of cross sections looks as

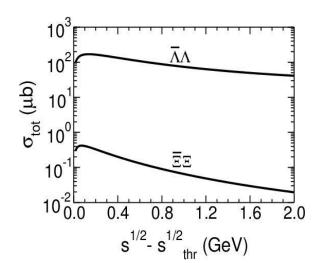
$$\frac{\sigma^{\bar{p}p\to\bar{\Xi}^-\Xi^-}}{\sigma^{\bar{p}p\to\bar{\Xi}^0\Xi^0}}\simeq \frac{\sigma^{\bar{p}p\to\bar{\Xi}^0_c\Xi^0_c}}{\sigma^{\bar{p}p\to\bar{\Xi}^+_c\Xi^+_c}}\simeq 4.$$

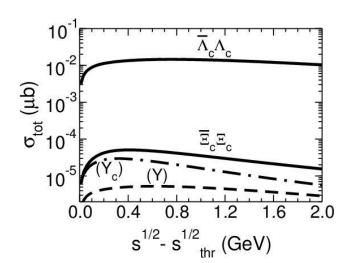
$$\equiv^-$$
 and \equiv^o_c

Cross sections

differential







Exclusive $\pi p \to M^* \Lambda$; $M^* = K^{o,*}$, D^{-*} reactions

$$\begin{array}{c|c}
\pi \overset{d}{\overline{u}} & \xrightarrow{\overline{s}} K^{O *} \\
p \overset{u}{\underset{d}{\downarrow}} & \xrightarrow{\overline{s}} \Lambda \\
\mathcal{R}_{p \wedge} \{K^{*}\} & & \\
\end{array}$$

$$\begin{array}{ccccc}
\pi \stackrel{d}{\downarrow} & & \downarrow & \downarrow & \downarrow \\
p \stackrel{u}{\downarrow} & & \downarrow & \downarrow & \downarrow \\
p \stackrel{u}{\downarrow} & & \downarrow & \downarrow & \downarrow \\
\mathcal{R}_{p \wedge_{c}} \{D^{*}\} & & \downarrow & \downarrow \\
\end{array}$$

$$T^{\pi p \to \Lambda M^*} \simeq g_0^2 \frac{s}{\overline{s}} \Gamma(1 - \alpha_{\mathcal{R}_{p\Lambda(\Lambda_c)}}(t)) \left(\frac{s}{s_0^{\mathcal{R}}}\right)^{2(\alpha_{\mathcal{R}_{p\Lambda(\Lambda_c)}}(t) - 1)}$$

$$\alpha_{\mathcal{R}_{p \wedge c}}(t) = 0.414 + 0.71t$$

$$\alpha_{\mathcal{R}_{p\wedge c}}(t) = 0.414 + 0.71t$$

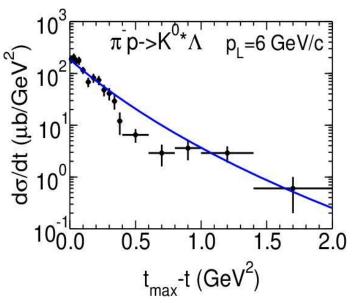
$$s^{\mathcal{R}_{p \wedge}} \simeq 1.59 \text{ GeV}^2$$

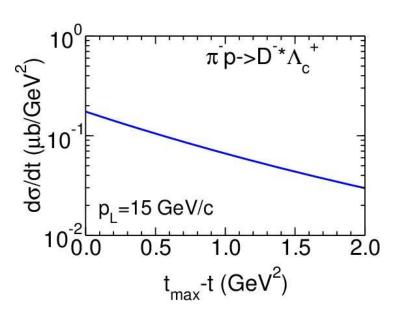
$$\frac{g_0^2}{4\pi} \simeq 0.8, \ \overline{s} \simeq 1 \text{GeV}^2$$

$$\alpha_{\mathcal{R}_{p \wedge c}}(t) = -1.02 + 0.47t$$

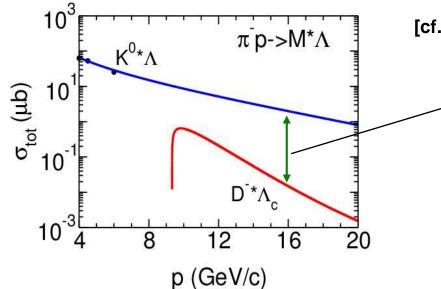
$$s^{\mathcal{R}_{p} \wedge_c} \simeq 4.75 \text{ GeV}^2$$

Differential cross sections





Total cross sections

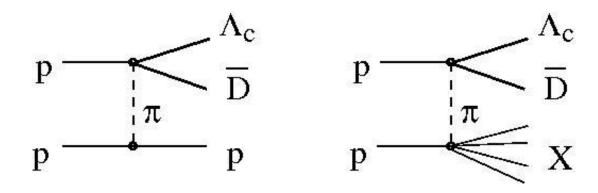


[cf. K. Boreskov, A.Kaidalov, Sov.J. Nucl.Phys. 37 (1982)]

$$\frac{c}{s} \simeq 10^{-2...-3} \text{ vs. } \frac{c}{s} \simeq 10^{-6}$$

[cf. V. Barger, R.Phillips, PRD 12 (1975)]

Reactions $pp \to \Lambda_c \bar{D} p$ and $pp \to \Lambda_c \bar{D} X$



$$d\sigma^{pp\to\Lambda_c\bar{D}\,p(X)}\sim \frac{d\sigma^{\pi p\to\Lambda_c\bar{D}}}{dt}\otimes\sigma_{\mathsf{tot}}^{\pi N}\,d[PS]$$

For high energy cf. K. Boreskov, A.Kaidalov, Sov.J. Nucl. Phys. 37 (1982)

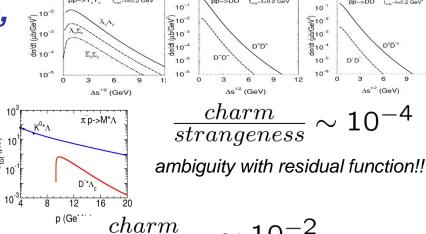
For J-PARC energies our work is in a progress

Summary

We have evaluated the cross sections for $\bar{p}p \to \bar{Y}_c Y_c, \ D\bar{D}, \ D^*\bar{D}, \ \dots \ reactions,$

including double flavor exchange,

igspace and for $\pi p o D^* igwedge_c$ reactions at $E_{lab} \leq 20 \text{ GeV}$



 $stsan\overline{geness}$

 $\sim 10^{-2}$

This result may be used for design of PANDA detector and "charm" program at JPARC

And for further development of the theoretical approaches in "charmed physics"

Thank you very much for attention!

BACKUP

Longitudinal asymmetries

$$\mathcal{A}(s,t) = \frac{d\sigma^A - d\sigma^P}{d\sigma^A + d\sigma^P},$$

where

$$d\sigma^A \equiv d\sigma^{\rightleftharpoons} \ d\sigma^P \equiv d\sigma^{\rightleftharpoons}$$

Polarized Antiproton EXperiment (PAX)

http://www.fz-juelich.de/ikp/pax/

Longitudinal asymmetry

$$\mathcal{A} = \frac{d\sigma^A - d\sigma^P}{d\sigma^A + d\sigma^P}, \qquad d\sigma^A \equiv d\sigma^{\rightleftharpoons}$$

$$\partial \sigma^P \equiv d\sigma^{\rightleftharpoons}$$

$$\partial \sigma^{\rightleftharpoons}$$

$$\partial \sigma^P \equiv d\sigma^{\rightleftharpoons}$$

$$\partial \sigma^{\rightleftharpoons}$$

$$T_{m_f n_f; m_i, n_i} \sim A(s) \, \delta_{m_i m_f} \, \delta_{n_i n_f}$$

$$+ \frac{1}{\sqrt{2}} B(s) \left(1 - 4 m_i m_f\right) \, \delta_{-m_i m_f} \delta_{-n_i n_f}$$

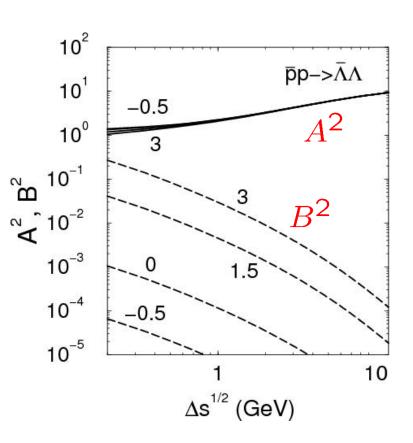
$$A = \frac{B^2(s)}{A^2(s) + B^2(s)}$$

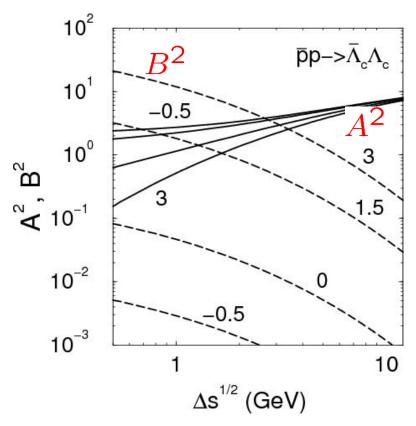
Structure of spin-flip amplitude

$$rac{ar{p}}{X}$$
 K^*
 p
 Y

$$B(s) = -\sqrt{2} \left((1 + \kappa) \left(\frac{\mathbf{p}_p}{E + M_N} - \frac{\mathbf{p}_Y}{E + M_Y} \right) \right)^2$$

$$A = \frac{B^2(s)}{A^2(s) + B^2(s)}$$

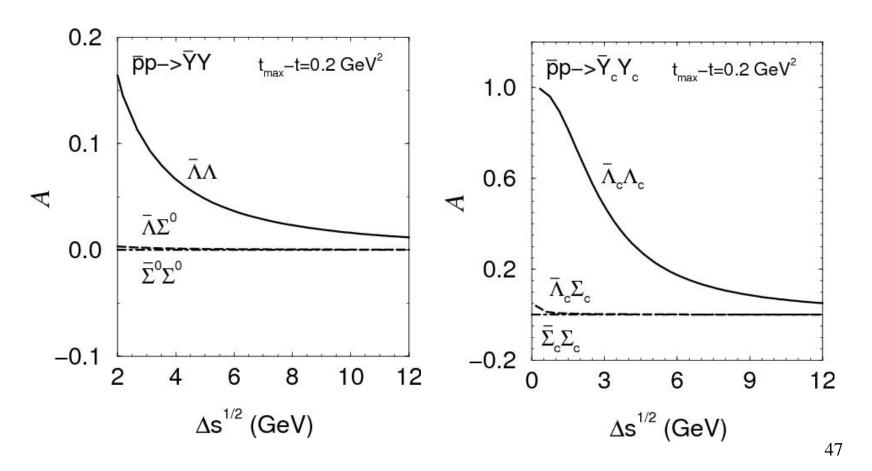




Asymmetry

s-dependence

Reaction $\bar{p}p \to \bar{Y}Y$, $Y = \Lambda, \Lambda_c^+, \Sigma^o, \Sigma_c^+$



Longitudinal asymmetry

$$\bar{p}p \to \bar{K}K(D\bar{D})$$

$$\theta = 0$$

$$J_{\text{final}} = 0$$

$$A = \frac{d\sigma^A - d\sigma^P}{d\sigma^A + d\sigma^P},$$

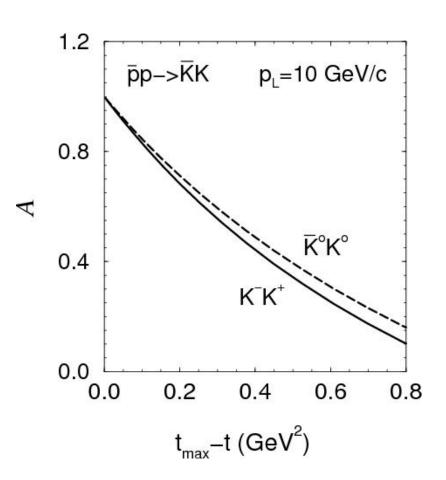
$$d\sigma^P \equiv d\sigma^2 \simeq 0$$

$${\cal A} \simeq 1$$

Asymmetry

t-dependence

Reactions $\bar{p}p \to \bar{K}K$, $D\bar{D}$

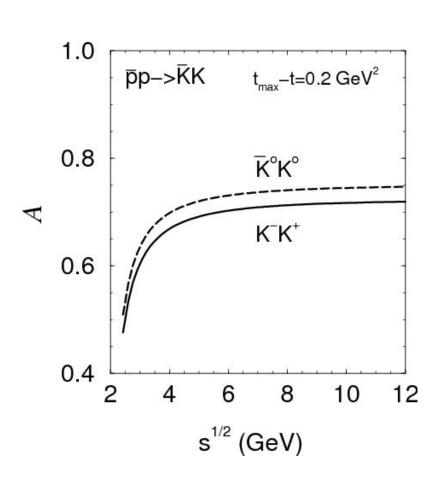


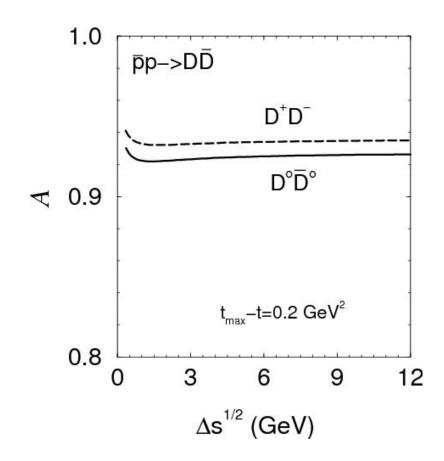


Asymmetry

s-dependence

Reactions $\bar{p}p \to \bar{K}K$, $D\bar{D}$





Longitudinal asymmetry

$$\bar{p}p \to \bar{K}K^*$$

pure vector coupling!!!

$$\theta = 0$$
 $s_f = 1, \lambda_V = 1, 0$

$$T_{\lambda_i;m_i,n_i} \sim \left(A \, \delta_{m_i n_i} + B \, \delta_{-m_i n_i}\right) \delta_{\lambda_i \lambda_V} ,$$

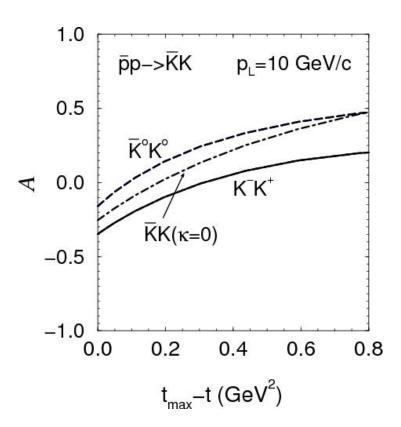
$$\lambda_i = m_i + n_i$$

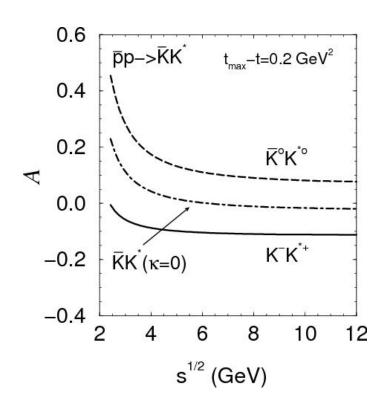
$$A \simeq \sqrt{2}, \qquad B \simeq \frac{M_N}{M_V} \; ,$$

$$A = \frac{M_N^2 - 2M_V^2}{M_N^2 + 2M_V^2} \qquad \sim -0.3 \, (\bar{K}K^*)$$

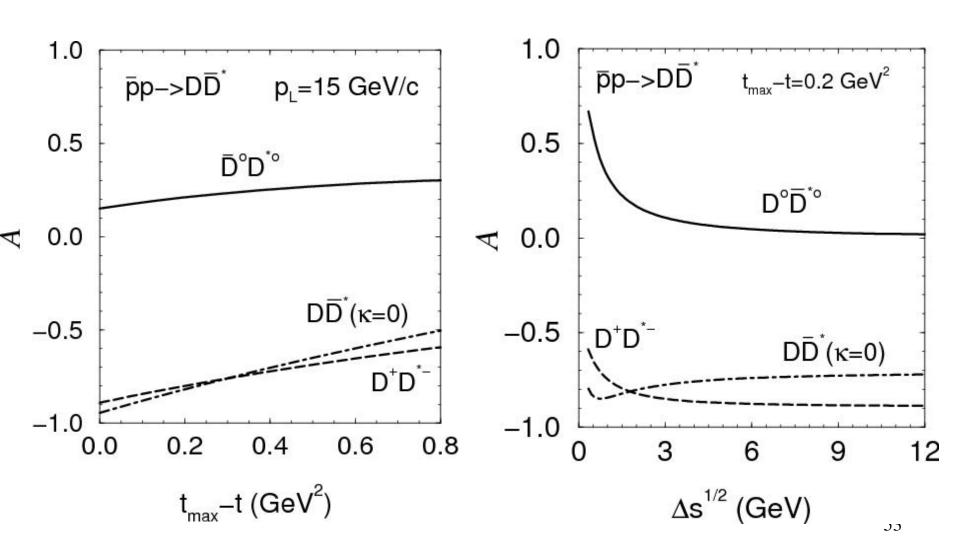
$$\sim -0.8 \, (D\bar{D}^*)$$

Reaction $\bar{p}p \to \bar{K}K^*$

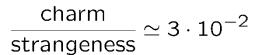




Reaction $\bar{p}p \to D\bar{D}^*$



OBE model



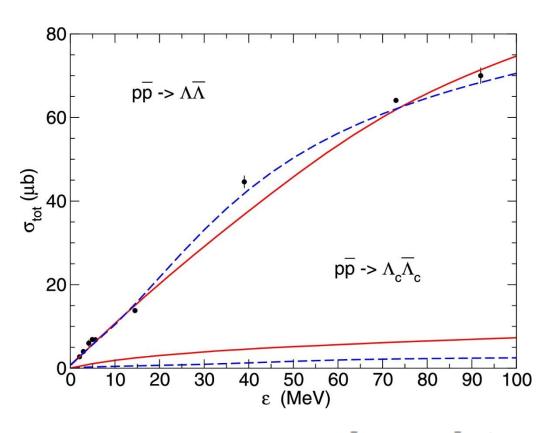


Fig. 2. Total reaction cross sections for $\bar{p}p \to \bar{\Lambda}\Lambda$ and $\bar{p}p \to \bar{\Lambda}_c^- \Lambda_c^+$ as a function of the excess energy ϵ . The results for $\bar{p}p \to \bar{\Lambda}\Lambda$ (upper curves) are taken from our work [7]. The solid curves are results for the meson-exchange transition potential while the dashed curves correspond to quark-gluon dynamics. The $\bar{p}p \to \bar{\Lambda}_c^- \Lambda_c^+$ results are obtained with the $\bar{p}p$ interaction C.

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} C(s, M_{\Lambda}) |T(s, M_{\Lambda})|^2 ,$$
$$\sim |1/(t - M_V^2)|^2$$

$$-t_s = 0.22...0.50$$

$$-t_c = 3.54...5.33$$

$$\frac{d\sigma^s}{d\sigma^c} \simeq 9.8 \times 54.4 \simeq 530$$

$$\frac{charm}{strangeness} \simeq 2 \cdot 10^{-4}$$

TABLE I. Parameters of the vector meson trajectories of the form (8). The intercept of the ρ trajectory was taken as an input.

	ρ	K*	ϕ	
α(0)	0.55	0.414±0.006	0.27±0.01	
\sqrt{T} , GeV	2.46 ± 0.03	2.58 ± 0.03	2.70 ± 0.07	
	D*	$D_{\mathfrak{s}}^*$	J/ψ	
$\alpha(0)$	-1.02 ± 0.05	-1.16 ± 0.05	-2.60 ± 0.10	
\sqrt{T} , GeV	3.91 ± 0.02	4.03 ± 0.04	5.36±0.05	
	B*	B*	B*	Y
α(0)	-7.13 ± 0.17	-7.27 ± 0.17	-8.70 ± 0.18	-14.81 ± 0.35
\sqrt{T} , GeV	7.48 ± 0.02	7.60 ± 0.04	8.93 ± 0.03	12.50 ± 0.02

TABLE V. Parameters of the pseudoscalar meson trajectories of the form (8). (The parameters for the K trajectory were found using the mass of K_2 from [29]. If we instead use a mass of the corresponding pure ns state as found in Ref. [46], i.e., $M_{K_2} = 1762 \pm 18$ GeV, the parameters change slightly: the intercept -0.153 ± 0.003 , and the threshold 2.93 ± 0.07 GeV.)

	π	K	$\eta_{\mathfrak{s}}$	
$\alpha(0)$	-0.0118±0.0001	-0.151±0.001	-0.291±0.003	
\sqrt{T} , GeV	2.82 ± 0.05	2.96 ± 0.05	3.10 ± 0.11	
	D	D_{z}	η_c	
$\alpha(0)$	-1.61105 ± 0.00005	-1.751 ± 0.001	-3.2103 ± 0.0001	
\sqrt{T} , GeV	4.16 ± 0.03	4.29 ± 0.06	5.49 ± 0.02	
	В	B_{s}	B_c	η_c
$\alpha(0)$	-7.41 ± 0.17	-7.54 ± 0.17	9.00 ± 0.17	-14.80 ± 0.34
\sqrt{T} , GeV	7.89 ± 0.16	8.01±0.16	9.24±0.12	12.98±0.24

TABLE II. Comparison of the masses of the spin-1, spin-3 and spin-5 states given by ten vector meson trajectories of the form (8) with data. All masses are in MeV.

	<i>J</i> =1		J=3		J=5	
	This work	Ref. [29]	This work	Ref. [29]	This work	Ref. [29]
$\alpha_{\rho}(t)$	769.0±0.9	769.0±0.9	1688.8±2.1	1688.8±2.1	2124±19	
$\alpha_{K^*}(t)$	896.1±0.3	896.1±0.3	1776±7	1776±7	2215±21	
$\alpha_{\phi}(t)$	1015 ± 17	1019.4	1863±31	1854±7	2305 ± 42	
$\alpha_{D*}(t)$	2006.7±0.5	2006.7±0.5	2721 ± 23		3191 ± 22	
$\alpha_{D_s^*}(t)$	2102 ± 29	$2106.6 \pm 2.1 \pm 2.7$	2808±28		3279 ± 30	
$\alpha_{J/\psi}(t)$	3096.9	3096.9	3753±41		4240±39	
$\alpha_{B*}(t)$	5324.9±1.8	5324.9±1.8	5814±51		6217±46	
$\alpha_{B_z^*}(t)$	5411±58	5416.3±3.3	5901±53		6306±49	
$\alpha_{B^*}(t)$	6356±80		6853 ± 72		7276±65	
$\alpha_{\rm Y}^{\ c}(t)$	9460.4±0.2	9460.4 ± 0.2	9906±91		10304±84	

TABLE VI. Comparison of the masses of the spin-0, spin-2 and spin-4 states given by ten pseudoscalar meson trajectories of the form (8) with data. (We take the error estimate on the η_b mass as 10% of the calculated splitting, in agreement with Fig. 2 of the second paper of Ref. [45].) All masses are in MeV.

	J=0		J=2		J=4	
	This work	Ref. [29]	This work	Ref. [29]	This work	Ref. [29]
$t_{\pi}(t)$	135	135	1677±8	1677±8	2237±26	
$\kappa(t)$	493.7	493.7	1773±8	1773±8	2333±27	
η_z	698±14		1869±38	1854±20	2429 ± 54	
D(t)	1864.1 ± 1.0	1864.1±1.0	2692±19		3228 ± 22	
$D_s(t)$	1971±19	1969.0 ± 1.4	2786±26		3323 ± 32	
$\eta_c(t)$	2979.8 ± 2.1	2979.8 ± 2.1	3692 ± 23		4217±25	
B(t)	5279.8±1.6	5279.8±1.6	5830±89		6286±93	
$B_{z}(t)$	5369.6±2.4	5369.6±2.4	5920±89		6376±93	
$B_c(t)$	6283 ± 79		6826±79		7287 ± 80	
$\eta_b^c(t)$	9424±3.6		9914±148		10353±150	