Degeneracy

T. Matsuk

Motivation

analysis

Conclusions and summary

Approximate degeneracy of heavy-light mesons with the same L

Takayuki Matsuki in collaboration with Y. Dong, F.-Q. Lü, and T. Morii

Tokyo Kasei Univ.

March 3, 2016

Index

Degeneracy

T. Matsuk

Motivatio

Analytica

Conclusions and summary

1 Motivation

2 Analytical analysis

Motivation

Degeneracy

T. Matsuk

Motivation

Analytical analysis

Conclusions and summary

■ Careful observation of experimental spectra ; degeneracy among states with the same L for $D/D_s/B/B_s$

Motivation

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- Careful observation of experimental spectra ; degeneracy among states with the same L for $D/D_s/B/B_s$
- Relativistic potential model respecting heavy-quark symmetry does not conserve L

Motivation

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- Careful observation of experimental spectra ; degeneracy among states with the same L for $D/D_s/B/B_s$
- Relativistic potential model respecting heavy-quark symmetry does not conserve L
- Godfrey-Isgur model respecting *L*
- Why do these two give the similar results?

D meson masses for different quark models

Degeneracy

T. Matsuk

Motivation

Analytica analysis

TABLE I: The D meson masses in MeV from different quark models and experimental data.

State	GI[1-3]	ZVR [6]	DE[7]	EFG[8]	MMS[9]	LS[10, 11]	EXP[13-16, 18]	Average	Gap
$D(1^{1}S_{0})$	1874	1850	1868	1871	1869	1867	1867	1938	
$D(1^3S_1)$	2038	2020	2005	2010	2011	2010	2009		
$D(1^3P_0)$	2398	2270	2377	2406	2283	2252	2361	2394	456
$D_1(1P)$	2455	2400	2417	2426	2421	2402	2427		
$D_1'(1P)$	2467	2410	2490	2469	2425	2417	2422	2443	49
$D(1^3P_2)$	2501	2460	2460	2460	2468	2466	2463		
$D(1^3D_1)$	2816	2710	2795	2788	2762	2740	2781	2763	330
$D_2(1D)$	2816	2740	2775	2806	2800	2693	2745		
$D_2'(1D)$	2845	2760	2833	2850	_	2789	2745	2763	0
$D(1^3D_3)$	2833	2780	2799	2863	_	2719	2800/2762		
$D(1^3F_2)$	3132	3000	3101	3090	_	_	-		
$D_3(1F)$	3109	3010	3074	3129	_	_	-		
$D_3'(1F)$	3144	3030	3123	3145	_	_	-		
$D(1^3F_4)$	3113	3030	3091	3187	_	_	_		

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary

 \blacksquare nonrelativistic and classical classification $^{2S+1}{\color{red}L_J}$

Degeneracy

T. Matsuk

Motivation

Analytical analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is *L* conserved? GI does but heavy-quark symmetry doesn't

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is L conserved? GI does but heavy-quark symmetry doesn't
- GI, ZVR, LS : Godfrey-Isgur model and its associates

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is *L* conserved? GI does but heavy-quark symmetry doesn't
- GI, ZVR, LS : Godfrey-Isgur model and its associates
- DE, MMS (EFG) : relativistic potential model respecting heavy-quark symmetry

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is L conserved? GI does but heavy-quark symmetry doesn't
- GI, ZVR, LS : Godfrey-Isgur model and its associates
- DE, MMS (EFG): relativistic potential model respecting heavy-quark symmetry
- EXP : experimental data

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is *L* conserved? GI does but heavy-quark symmetry doesn't
- GI, ZVR, LS : Godfrey-Isgur model and its associates
- DE, MMS (EFG): relativistic potential model respecting heavy-quark symmetry
- EXP : experimental data
- Average : average of a spin multiplet

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- nonrelativistic and classical classification ^{2S+1}L_J
- Is L conserved? GI does but heavy-quark symmetry doesn't
- GI, ZVR, LS : Godfrey-Isgur model and its associates
- DE, MMS (EFG) : relativistic potential model respecting heavy-quark symmetry
- EXP : experimental data
- Average : average of a spin multiplet
- Gap : gap between spin multiplets ($\sim \Lambda_Q = 300 \text{ MeV}$)

Relativistic potential model respecting heavy-quark symmetry

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary expanding system in $1/m_Q$

$$(H_{-1} + H_0 + \dots - m_Q) (\psi_{\ell}^0 + \psi_{\ell}^1 + \dots)$$

= $(E_{\ell}^0 + E_{\ell}^1 + \dots - m_Q) (\psi_{\ell}^0 + \psi_{\ell}^1 + \dots)$

Relativistic potential model respecting heavy-quark symmetry

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary expanding system in $1/m_Q$

$$(H_{-1} + H_0 + \dots - m_Q) (\psi_{\ell}^0 + \psi_{\ell}^1 + \dots)$$

$$= (E_{\ell}^0 + E_{\ell}^1 + \dots - m_Q) (\psi_{\ell}^0 + \psi_{\ell}^1 + \dots)$$

Lowest order equation of motion

$$(\vec{\alpha}_q \cdot \vec{p} + \beta_q m_q) \Psi_\ell^+ = E_\ell^0 \Psi_\ell^+$$

One Dirac particle equation $(\Psi_{\ell}^+: 4{\times}4 \text{ spinor})$

Godfrey-Isgur model

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary

Equation of motion which conserves L, J, and j_ℓ

$$\begin{split} H\Psi &= (H_0+V)\Psi = E\Psi,\\ H_0 &= \sqrt{p^2+m_1} + \sqrt{p^2+m_2^2},\\ V &= H^{conf} + H^{hyp} + H^{SO} \end{split}$$

Godfrey-Isgur model

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary Equation of motion which conserves L, J, and j_ℓ

$$H\Psi=(H_0+V)\Psi=E\Psi,$$
 $H_0=\sqrt{p^2+m_1^2}+\sqrt{p^2+m_2^2},$ $V=H^{conf}+H^{hyp}+H^{SO}$

H^{SO} (spin-orbit term) breaks rotational symmetry

Anylytical analysis (heavy-quark symmetry)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Conclusions and summary Lowest order Hamiltonian

$$\begin{array}{rcl} H_0 & = & \vec{\alpha}_{q} \cdot \vec{p} + m_{q} \beta_{q}, \\ \left[H_0, \vec{L} \right] & = & -i \alpha_{q} \times \vec{p}, \left[H_0, \frac{1}{2} \vec{\Sigma}_{q} \right] = i \vec{\alpha}_{q} \times \vec{p} \end{array}$$

which conserves light quark degrees of freedom $\vec{j_\ell} = \vec{L} + 1/2\vec{\Sigma}_q$ and total angular momentum $\vec{j} = \vec{j_\ell} + 1/2\vec{\Sigma}_Q$

Analytical analysis (E.V. of $[H_0, \vec{L}^2]$)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Calculate
$$[H_0, \vec{L}^2]$$

$$\mathcal{M} = [H_0, \vec{L}^2] = i\alpha_{qj} \left(ip_j - r_j p^2 + (r \cdot p)p_j \right) \equiv \alpha_{qj} f_j(r, p)$$

Analytical analysis (E.V. of $[H_0, \vec{L}^2]$)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Conclusions and summary Calculate $[H_0, \vec{L}^2]$

$$\mathcal{M} = [H_0, \vec{L}^2] = i\alpha_{qj} \left(ip_j - r_j p^2 + (r \cdot p)p_j \right) \equiv \alpha_{qj} f_j(r, p)$$

For any operator ${\mathcal O}$ and eigenfunction Ψ_ℓ , we have

Theorem 2.1

$$\left\langle \Psi_{\ell}\right|\left[\textit{H}_{0},\mathcal{O}\right]\Psi_{\ell}\rangle=0$$

Analytical analysis (E.V. of $[H_0, \vec{L}^2]$)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Conclusions and summary Calculate $[H_0, \vec{L}^2]$

$$\mathcal{M} = [H_0, \vec{L}^2] = i\alpha_{qj} (ip_j - r_j p^2 + (r \cdot p)p_j) \equiv \alpha_{qj} f_j(r, p)$$

For any operator ${\mathcal O}$ and eigenfunction Ψ_ℓ , we have

Theorem 2.1

$$\langle \Psi_{\ell} | [H_0, \mathcal{O}] \Psi_{\ell} \rangle = 0$$

Proof.

$$\left\langle \Psi_{\ell}\right|\left[H_{0},\mathcal{O}\right]\Psi_{\ell}\rangle=\left\langle \Psi_{\ell}\right|\left(E_{0}\mathcal{O}-\mathcal{O}E_{0}\right)\left|\Psi_{\ell}\right\rangle=0$$

Analytical analysis (actual wave function)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Conclusions and summary General actual wave function is given by

$$\psi_{\ell} = \Psi_{\ell}^{+} + \sum_{\ell'} \left(c_{+}^{\ell,\ell'} \Psi_{\ell'}^{+} + c_{-}^{\ell,\ell'} \Psi_{\ell'}^{-} \right),$$

where $\ell = \{k, j, m\}$ with a total angular momentum j and its z-component m. $(k, j_{\ell}) = (-1, (1/2)^{-}), (+1, (1/2)^{+}), \cdots$ and

Analytical analysis (actual wave function)

Degeneracy

T. Matsuk

Motivation

Analytical analysis

Conclusions and summary General actual wave function is given by

$$\psi_{\ell} = \Psi_{\ell}^{+} + \sum_{\ell'} \left(c_{+}^{\ell,\ell'} \Psi_{\ell'}^{+} + c_{-}^{\ell,\ell'} \Psi_{\ell'}^{-} \right),$$

where $\ell = \{k, j, m\}$ with a total angular momentum j and its z-component m. $(k, j_{\ell}) = (-1, (1/2)^{-}), (+1, (1/2)^{+}), \cdots$ and

$$\begin{split} \Psi_{\ell}^{+} &= \left(0 \; \psi_{jm}^{k}\right), \quad \Psi_{\ell}^{-} &= \left(\psi_{jm}^{k} \; 0\right), \\ \psi_{jm}^{k}(r, \Omega) &= \frac{1}{r} \left(\begin{array}{c} u_{k}(r) y_{jm}^{k} \\ i v_{k}(r) y_{jm}^{-k} \end{array}\right) \end{split}$$

Analytical analysis (actual wave function)

Degeneracy

T. Matsuk

Motivatio

Analytical analysis

Conclusions and summary General actual wave function is given by

$$\psi_{\ell} = \Psi_{\ell}^{+} + \sum_{\ell'} \left(c_{+}^{\ell,\ell'} \Psi_{\ell'}^{+} + c_{-}^{\ell,\ell'} \Psi_{\ell'}^{-} \right),$$

where $\ell = \{k, j, m\}$ with a total angular momentum j and its z-component m. $(k, j_{\ell}) = (-1, (1/2)^{-}), (+1, (1/2)^{+}), \cdots$ and

$$\begin{split} \Psi_{\ell}^{+} &= \left(0 \; \psi_{jm}^{k}\right), \quad \Psi_{\ell}^{-} &= \left(\psi_{jm}^{k} \; 0\right), \\ \psi_{jm}^{k}(r, \Omega) &= \frac{1}{r} \left(\begin{array}{c} u_{k}(r) y_{jm}^{k} \\ i v_{k}(r) y_{jm}^{-k} \end{array}\right) \end{split}$$

 $\Psi_{\ell}^{+/-}$: positive/negative component of Q

Analytical analysis (0⁻ & 1⁻ states)

Degeneracy

T. Matsuk

Motivation

Analytical analysis

Conclusions and summary $0^-\ \&\ 1^-$ states are given by

$$\psi_{\ell}(0^{-}) = \Psi_{-1}^{+} + c_{1-}^{-1,1}\Psi_{1}^{-} + O\left(1/m_{Q}^{2}\right),$$

$$\psi_{\ell}(1^{-}) = \Psi_{-1}^{+} + c_{1+}^{-1,2}\Psi_{2}^{+} + c_{1-}^{-1,-2}\Psi_{-2}^{-} + O\left(1/m_{Q}^{2}\right),$$

Analytical analysis (0⁻ & 1⁻ states)

Degeneracy

T. Matsuk

Motivation

Analytical analysis

Conclusions and summary

 $0^- \& 1^-$ states are given by

$$\begin{array}{lll} \psi_{\ell}(0^{-}) & = & \Psi_{-1}^{+} + c_{1-}^{-1,1}\Psi_{1}^{-} + O\left(1/m_{Q}^{2}\right), \\ \psi_{\ell}(1^{-}) & = & \Psi_{-1}^{+} + c_{1+}^{-1,2}\Psi_{2}^{+} + c_{1-}^{-1,-2}\Psi_{-2}^{-} + O\left(1/m_{Q}^{2}\right), \end{array}$$

 $c_{1\pm}^{k',k}$ are of the order of $1/m_Q$.

Analytical analysis (0⁻ & 1⁻ states)

Degeneracy

T. Matsuki

Motivatio

Analytical analysis

Conclusions and summary

 $0^-\ \&\ 1^-$ states are given by

$$\begin{array}{lcl} \psi_{\ell}(0^{-}) & = & \Psi_{-1}^{+} + c_{1-}^{-1,1}\Psi_{1}^{-} + O\left(1/m_{Q}^{2}\right), \\ \psi_{\ell}(1^{-}) & = & \Psi_{-1}^{+} + c_{1+}^{-1,2}\Psi_{2}^{+} + c_{1-}^{-1,-2}\Psi_{-2}^{-} + O\left(1/m_{Q}^{2}\right), \end{array}$$

 $c_{1\pm}^{k',k}$ are of the order of $1/m_Q$. Using these w.f.'s, matrix elements are given by

$$\begin{split} \left\langle \Psi_{\ell'}^{+} | \mathcal{M} | \Psi_{\ell}^{-} \right\rangle &= \left\langle \Psi_{\ell'}^{-} | \mathcal{M} | \Psi_{\ell}^{+} \right\rangle = 0, \\ \left\langle \Psi_{\ell'}^{\pm} | \mathcal{M} | \Psi_{\ell}^{\pm} \right\rangle &= i \int d^{3}r \frac{1}{r} \left[-v_{k'}(r) y_{j'm'}^{-k'\dagger} \sigma_{n} f_{n}(r, p) \right. \\ &\times \left(\frac{1}{r} u_{k}(r) y_{jm}^{k} \sigma_{i} \right) + u_{k'}(r) y_{j'm'}^{k'\dagger} \sigma_{n} f_{n}(r, p) \left(\frac{1}{r} v_{k}(r) y_{jm}^{-k} \sigma_{i} \right) \right] \end{split}$$

Degeneracy

T. Matsuk

Motivation

Analytica analysis

Conclusions and summary

■ Matrix element (M.E.) starts from $(1/m_Q)^2$ for 0^-

Degeneracy

T. Matsuk

Motivation

Analytica analysis

- Matrix element (M.E.) starts from $(1/m_Q)^2$ for 0^-
- \blacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi^+_{-1}|\mathcal{M}|\Psi^+_2\right>)$

Degeneracy

T. Matsuk

Motivatio

Analytica

- Matrix element (M.E.) starts from $(1/m_Q)^2$ for 0^-
- lacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi_{-1}^+|\mathcal{M}|\Psi_2^+\right>$)
- general M.E. starts from $1/m_Q$ because of general expression for wave function

Degeneracy

T. Matsuk

Motivatio

Analytic

- Matrix element (M.E.) starts from $(1/m_Q)^2$ for 0⁻
- lacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi_{-1}^+|\mathcal{M}|\Psi_2^+\right>$)
- lacktriangle general M.E. starts from $1/m_Q$ because of general expression for wave function
- Neglection of $v_k(r)$ leads to rotational symmetry $\vec{L}^2 y_{jm}^k = k(k+1) y_{jm}^k = L(L+1) y_{jm}^k$

Degeneracy

T. Matsuk

Motivatio

Analytic

- Matrix element (M.E.) starts from $(1/m_Q)^2$ for 0^-
- lacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi_{-1}^+|\mathcal{M}|\Psi_2^+\right>$)
- general M.E. starts from $1/m_Q$ because of general expression for wave function
- Neglection of $v_k(r)$ leads to rotational symmetry $\vec{L}^2 y_{jm}^k = k(k+1) y_{jm}^k = L(L+1) y_{jm}^k$
- This corresponds to nonrelativistic limit of heavy quark symmetry!!

Degeneracy

T. Matsuk

Motivatio

analysis

- Matrix element (M.E.) starts from $(1/m_O)^2$ for 0^-
- lacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi_{-1}^+|\mathcal{M}|\Psi_2^+\right>$)
- $lue{}$ general M.E. starts from $1/m_Q$ because of general expression for wave function
- Neglection of $v_k(r)$ leads to rotational symmetry $\vec{L}^2 y_{jm}^k = k(k+1) y_{jm}^k = L(L+1) y_{jm}^k$
- This corresponds to nonrelativistic limit of heavy quark symmetry!!
- Application of our idea : QQq, $QQ\bar{Q}q$, heavy quarks + a brown mock of light quarks

Degeneracy

T. Matsuki

Motivatio

Analytical

- Matrix element (M.E.) starts from $(1/m_O)^2$ for 0^-
- lacksquare M.E. starts from $1/m_Q$ for 1^- (e.g., $\left<\Psi_{-1}^+|\mathcal{M}|\Psi_2^+\right>$)
- general M.E. starts from $1/m_Q$ because of general expression for wave function
- Neglection of $v_k(r)$ leads to rotational symmetry $\vec{L}^2 y_{jm}^k = k(k+1) y_{jm}^k = L(L+1) y_{jm}^k$
- This corresponds to nonrelativistic limit of heavy quark symmetry!!
- Application of our idea : QQq, $QQ\bar{Q}q$, heavy quarks + a brown mock of light quarks
- LHCb and forthcoming Bellell are expected to test our observation

Thanks for your attention

Degeneracy

T. Matsuk

Motivatio

Analytica

Conclusions and summary

Thanks for your attention!

