Dibaryons with and without Heavy Flavor

Makoto Oka

Tokyo Institute of Technology and ASRC, JAEA

International Workshop on Progress on J-PARC Hadron Physics March 03, 2016

Dibaryons with and without Strangeness

Makoto Oka

Tokyo Institute of Technology and ASRC, JAEA

International Workshop on Progress on J-PARC Hadron Physics March 03, 2016

Why dibaryons?

- **♯** Dibaryon = (Baryon+ Baryon) = (6 quarks)
- **A** "loosely bound" dibaryon (ex. deuteron) is a hadron molecule, which provides important information on the (longrange) baryon-baryon interaction.
- **★** A compact dibaryon could be a 6-quark state, which is related to the short-distance baryon-baryon interaction.
- **■** The dibaryon is a "good" resonance because there is no annihilation channel. The only outgoing channels are two baryons (neglecting meson emissions).
- **♯** The quark model symmetries give simple and robust guidelines on the existence of compact dibaryons.

Pauli principles and Spin dependence

Symmetries

- **#** Recent Lattice QCD calculations (HALQCD) have confirmed that the short-range baryon-baryon interactions follow the quark model symmetry and dynamics.
- **#** Two important effects are given by
 - Fermi-Dirac statistics among quarks (Pauli effect)
 - Spin dependent force: Color-magnetic interaction (CMI)
- **■** Symmetries of internal degrees of freedom spin × flavor × color × orbital motion $SU(2)_s \times SU(N_f)_f \times SU(3)_c \times O(3)$ $SU(2N_f)_{sf} \times SU(3)_c \times O(3)$

Pauli effect

■ SU_{sf}(6) ⊃ SU(2)_s × SU(3)_f symmetry of two-baryon states: two 56 [3] = (8, 1/2) + (10, 3/2) baryons.

SU(6) Sym Anti Sym

[3] x [3] = [6] + [42] + [51] + [33]

$$56 \quad 56 \quad \text{odd L}$$
 even L

Strong repulsion due to the Pauli Exclusion Principle

[6] x [51] x [222]
$$\neq$$
 [111111]
orbital flavor color spin Singlet

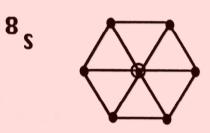
The totally symmetric orbital states are <u>forbidden</u> in the [51] flavor-spin states.

Strong short-range repulsion appears when the [6] symmetric orbital state is forbidden by the Pauli principle.

taken from D. Sc Thesis by M.O. (1980)

L	SU (4)	BB' (S,I)
	{33}	ΔΔ (3,0), ΔΔ (0,3)
a a	{51} forbidden	$\Delta\Delta$ (3,2), $\Delta\Delta$ (2,3), $N\Delta$ (2,2), $N\Delta$ (1,1)
even	{33}+ {51}	$\Delta\Delta+N\Delta$ (2,1), $\Delta\Delta+N\Delta$ (1,2) $NN+\Delta\Delta$ (1,0), $NN+\Delta\Delta$ (0,1)
	{6} forbidden	ΔΔ (3,3)
	{42}	$\Delta\Delta(3,1)$, $\Delta\Delta(1,3)$, $\Delta\Delta(2,0)$, $\Delta\Delta(0,2)$ $N\Delta(2,1)$, $N\Delta(1,2)$
odd	(6) + (42)	$N\Delta + \Delta\Delta (2,2)$, $NN + \Delta\Delta (0,0)$
	${6} + {42}^{2}$	$NN+N\Delta+\Delta\Delta$ (1,1)

B_8B_8 Flavor Symmetric \rightarrow singlet even/triplet odd


NN(I=1)

 $\Sigma N(I=3/2), \Sigma N-\Lambda N(I=1/2)$

 $\Sigma\Sigma(I=2)$, $\Xi N-\Sigma\Sigma-\Sigma\Lambda(I=1)$, $\Xi N-\Sigma\Sigma-\Lambda\Lambda(I=0)$

 $\Xi\Sigma(I=3/2), \Xi\Sigma-\Xi\Lambda(I=1/2)$

 $\Xi\Xi(I=1)$

 $\Sigma N - \Lambda N(I=1/2)$

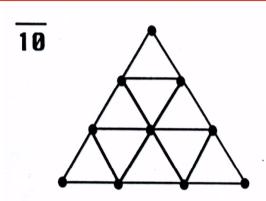

 $\Xi N-\Sigma\Lambda(I=1), \ \Xi N-\Sigma\Sigma-\Lambda\Lambda(I=0)$

 $\Xi\Sigma$ - $\Xi\Lambda$ (I=1/2)

1

 $\Xi N - \Sigma \Sigma - \Lambda \Lambda (I=0)$

B_8B_8 Flavor Antisymmetric \rightarrow triplet even/singlet odd



 $\Sigma N(I=3/2)$

 $\Xi N - \Sigma \Sigma - \Sigma \Lambda (I=1)$

 $\Xi\Sigma$ - $\Xi\Lambda$ (I=1/2)

 $\Xi\Xi(I=0)$

NN(I=0)

 $\Sigma N - \Lambda N(I=1/2)$

 $\Xi N-\Sigma\Lambda(I=1)$

 $\Xi\Sigma(I=3/2)$

 $\Sigma N - \Lambda N(I=1/2)$

 $\Xi N - \Sigma \Sigma - \Sigma \Lambda (I=1), \ \Xi N (I=0)$

 $\Xi\Sigma$ - $\Xi\Lambda$ (I=1/2)

Pauli effect

HAL QCD data are consistent with the quark Pauli effects.

S=0

1 [33] Allowed,
$$\Lambda\Lambda + N\Xi + \Sigma\Sigma \rightarrow H$$

8_s [51] Pauli forbidden, ΣN (I=1/2, S=0)

27 [33], [51] 55% Allowed, NN $^{1}S_{0}$

S=1

8_a [33], [51] Almost forbidden, ΣN (I=3/2, S=1)

10* [33], [51] NN $^{3}S_{1}$

HAL QCD data are co

S=0

1	[33]		All
8 _s		[51]	Pa

$$S=1$$

10	[33]	,	[51]	Al
10	[33	9	[21]	Al

Pauli effect T. Inoue et al., (HAL QCD) PTP 124, 591 (2010)

Spin dependence

♯ Spin-spin interaction aka Color-Magnetic Interaction (CMI)

$$V_{\mathrm{CMI}} = -lpha \sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) f(r_{ij}) \qquad f(r_{ij}) \sim \delta(r_{ij})$$
 prefers symmetric color-spin states $\langle V_{\mathrm{CMI}} \rangle_{(0s)^N} = lpha \, \langle f(r) \rangle_{0s} \Delta_{\mathrm{CM}} = V_0 \Delta_{\mathrm{CM}}$

$$\Delta_{\mathrm{CM}} \equiv \langle -\sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) \rangle$$

$$\Delta_{\text{CM}} = 8N - 2C_2[SU(6)_{cs}] + \frac{4}{3}S(S+1) + C_2[SU(3)_c]$$

$$C_2[SU(g)]([f_1, f_2, \dots, f_g]) = \sum_i f_i(f_i - 2i + g + 1) - \frac{N^2}{g}$$

 $C_2[\text{singlet}] = 0$

Spin dependence

CMI prefers color-spin symmetric states, i.e. flavor antisymmetric states.

$$\Delta_{\text{CM}} = 8N - 2C_2[SU(6)_{cs}] + \frac{4}{3}S(S+1) + C_2[SU(3)_c]$$

$$\Delta_{\rm CM}(\mathbf{10}) - \Delta_{\rm CM}(\mathbf{8}) = 8 - (-8) = 16$$

$$M(\Delta) - M(N) = 16V_0 \sim 300 \,\mathrm{MeV}$$

$$V_0 \sim 300/16 \sim 19 \,\mathrm{MeV}$$

$$\Delta_{\mathrm{CM}}(H) - 2\Delta_{\mathrm{CM}}(\Lambda) = -24 - 2(-8) = -8$$
 H ($\Lambda\Lambda+N\Xi+\Sigma\Sigma$, S=0)
 $\Delta_{\mathrm{CM}}(D_{\Delta}) - 2\Delta_{\mathrm{CM}}(\Delta) = 16 - 2 \times 8 = 0$ D_{\Lambda}($\Delta\Lambda$, I=0, S=3)

H dibaryon

H dibaryon

$$\overline{H} = u^2 d^2 s^2$$
 (S= -2, J=0⁺ I=0) predicted by Jaffe (1977)

CMI prefers

symmetric color-spin state ⇔ antisymmetric flavor state Most favored state is the flavor singlet state.

$$\Sigma\Sigma = 150$$

$$|F = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

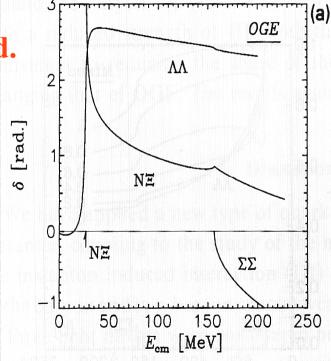
$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

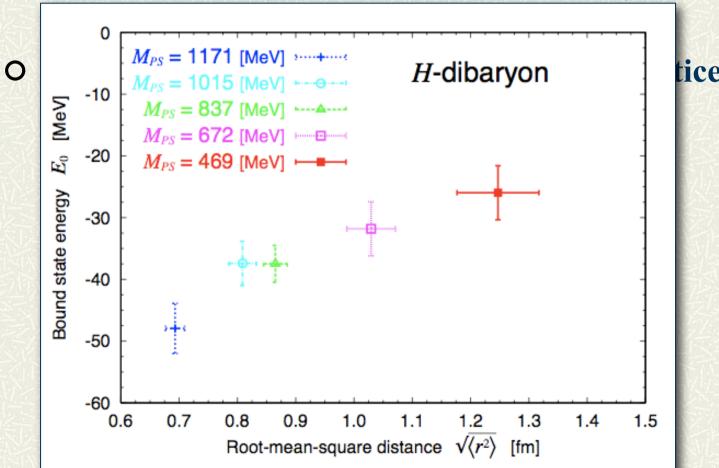

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

$$|K = 1\rangle = -\sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle + \sqrt{\frac{3}}|\Sigma\Sigma\rangle + \sqrt{\frac$$

H dibaryon

Quark cluster model approach to the coupled channel $\Lambda\Lambda$, N Ξ , $\Sigma\Sigma$ system, with the linear + OgE potential for quarks. MO, K. Shimizu, K. Yazaki (1983)

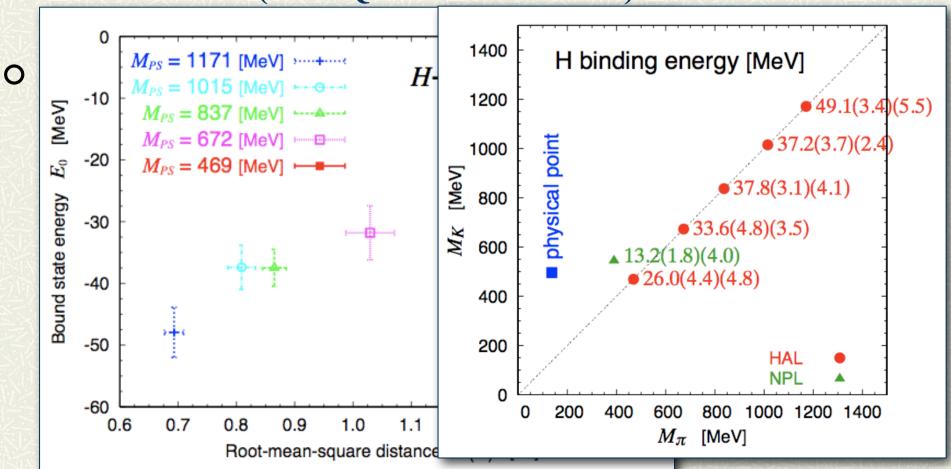
- The B₈B₈ (F=1) channel is Pauli super-allowed.
- There appears a very sharp resonance just below the N≡ threshold.
- Additional long range attraction will form a bound state below the $\Lambda\Lambda$ threshold.
- S. Takeuchi and MO (1991)
- The instanton induced interaction yields 3-body repulsive force to H, resulting no bound state.


$$|\text{Singlet}\rangle = \sqrt{\frac{1}{8}}|\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}}|N\Xi\rangle - \sqrt{\frac{3}{8}}|\Sigma\Sigma\rangle$$

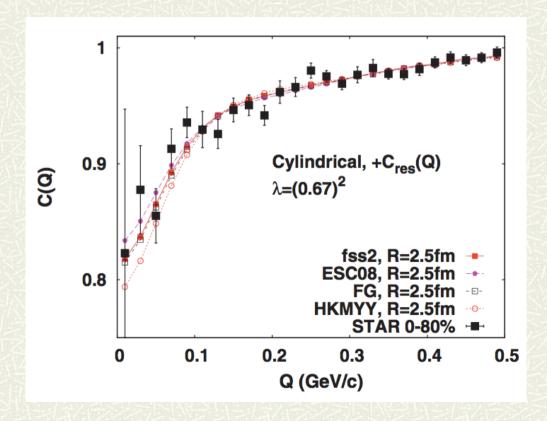
H dibaryon on Lattice

- **New Lattice QCD calculations of H dibaryon**
- O Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD Takashi Inoue (HAL QCD Collaboration) PRL 106, 162002 (2011)
- O Evidence for a Bound H di-baryon from Lattice QCD S. R. Beane et al. (NPLQCD Collaboration) PRL 106, 162001 (2011)

H dibaryon on Lattice


- **New Lattice QCD calculations of H dibaryon**
- O Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD Takashi Inoue (HAL QCD Collaboration)

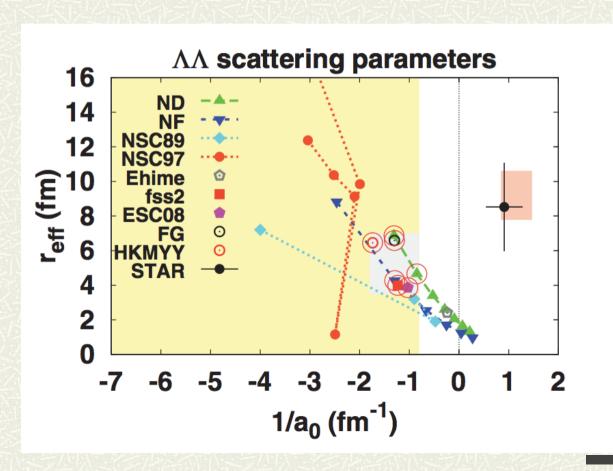
tice QCD


H dibaryon on Lattice

- **New Lattice QCD calculations of H dibaryon**
- O Bound H di-baryon in Flavor SU(3) Limit of Lattice QCD Takashi Inoue (HAL QCD Collaboration)

AA correlation in Heavy Ion Collisions

- **■** STAR collaboration, PRL 114, 022301 (2015) $\Lambda\Lambda$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV
- **♯** K. Morita, T. Furumoto, A. Ohnishi, PRC 91, 024916 (2015) \(\Lambda \Lambda \) interaction from relativistic heavy-ion collisions



AA correlation in Heavy Ion Collisions

★ K. Morita, T. Furumoto, A. Ohnishi, PRC 91, 024916 (2015)The STAR data prefer small negative scattering length (attractive) and effective range ~ 4 fm. The recent new potentials, fss2 and ESC08, are favored.

AA correlation in Heavy Ion Collisions

★ K. Morita, T. Furumoto, A. Ohnishi, PRC 91, 024916 (2015)The STAR data prefer small negative scattering length (attractive) and effective range ~ 4 fm. The recent new potentials, fss2 and ESC08, are favored.

$D_{\Delta} (\Delta \Delta)_{I=0}$ dibaryon

$D_{\Delta} (\Delta \Delta)_{I=0}$ dibaryon

 \blacksquare S=3, I=0 (Δ^2) bound state

 \rightarrow relatively narrow NN $\pi\pi$ (I=0) resonance

NUCLEAR FORCE IN A QUARK MODEL

Phys. Lett. 90B (1980) 41

M. OKA and K. YAZAKI

Department of Physics, Faculty of Science, University of Tokyo, Bunkyō-ku, Tokyo 113, Japan

Received 24 July 1979

The problem of the nuclear force in a nonrelativistic quark model is studied by the resonating group method which has been extensively used in treating the interaction between composite particles. The calculated phase shifts for the ${}^{3}S_{1}$ and ${}^{1}S_{0}$ states of two nucleons indicate the presence of a strong repulsive force at short distance, while an attractive force is predicted for the ${}^{7}S_{3}((S, T) = (3, 0))$ state of two Δ 's. These features are due to an interplay between the Pauli principle and the spin-spin interaction between quarks.

Classification of two baryon systems without strangeness. The spin-flavor SU(6) is reduced to the spin-isospin SU(4). S(I) denotes the total spin (isospin) of the system.

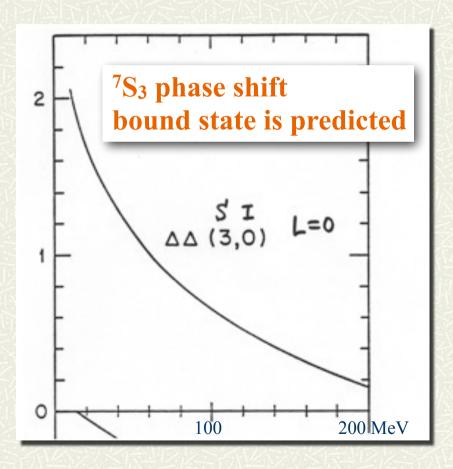
taken from D. Sc Thesis by M.O. (1980)

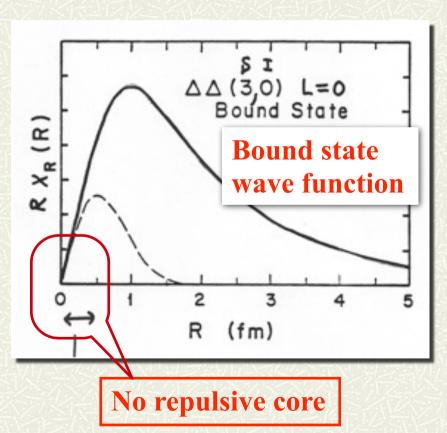
L	SU(4)	BB' (S,I)
	{33}	$\Delta\Delta$ (3,0), $\Delta\Delta$ (0,3) favored by $SU(6)$
ue	{51}	$\Delta\Delta$ (3,2), $\Delta\Delta$ (2,3), $N\Delta$ (2,2), $N\Delta$ (1,1)
even	{33}+ {51}	$\Delta\Delta+N\Delta$ (2,1), $\Delta\Delta+N\Delta$ (1,2) $NN+\Delta\Delta$ (1,0), $NN+\Delta\Delta$ (0,1)
	{6}	ΔΔ(3,3)
	{42}	$\Delta\Delta(3,1)$, $\Delta\Delta(1,3)$, $\Delta\Delta(2,0)$, $\Delta\Delta(0,2)$ N $\Delta(2,1)$, N $\Delta(1,2)$
odd	(6) + (42)	$N\Delta + \Delta\Delta(2,2)$, $NN + \Delta\Delta(0,0)$
	${6} + {42}^2$	NN+NΔ+ΔΔ (1,1)

$$\Gamma_{\text{CM}} \equiv -\sum_{i < j} (\lambda_i^a \lambda_j^a) (\sigma_i^k \sigma_j^k) = 8n - 2C_6 + \frac{4}{3}S(S+1)$$

$$C_6 \equiv C_2[SU(6)_{\text{cs}}] = \sum_i f_i (f_i - 2i + 7) - \frac{n^2}{6}$$

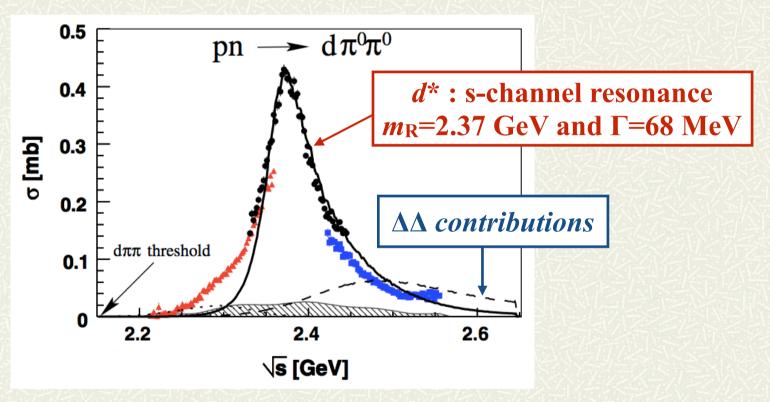
CMI strength: $V_0 = 300/16 \sim 18 (\text{MeV})$ from $\Gamma_{\text{CM}}(\Delta) = +8$ $\Gamma_{\text{CM}}(N) = -8$


SU(6) _{cs} representation	$4C_6$	SU(3) _f representation	
490	144	<u>1</u> H =	$\Lambda\Lambda(I=S=0) V=V_0\times(-8)$
896	120	8	
280	96	10	
175	96	10 * △.	$\Delta(I=0,S=3) V=V_0\times 0$
189	80	27	favored
35	48	35	
1	0	Δ	$\Delta(I=3, S=0) V = V_0 \times 32$
		- Control of the Cont	

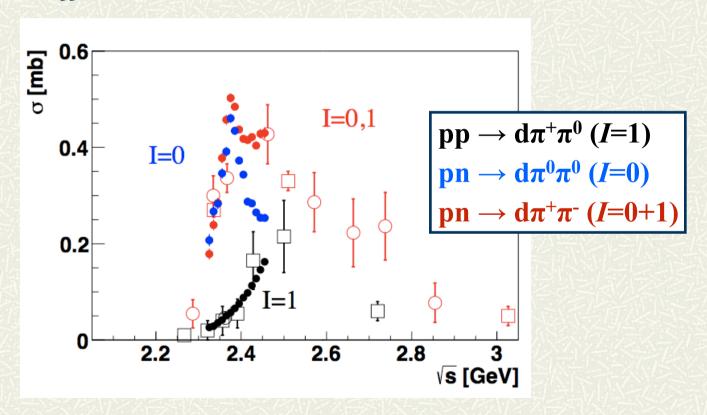

Perhaps a Stable Dihyperon* R.L. Jaffe, PRL 38 (1977) 195 less favored

$D_{\Delta} (\Delta \Delta)_{I=0}$ dibaryon

 \blacksquare Quark Cluster Model: S=3, I=0 (Δ^2) bound state


MO, K. Yazaki, Phys. Lett. 90B (1980) 41

WASA@COSY, PRL 106, 242302 (2011)

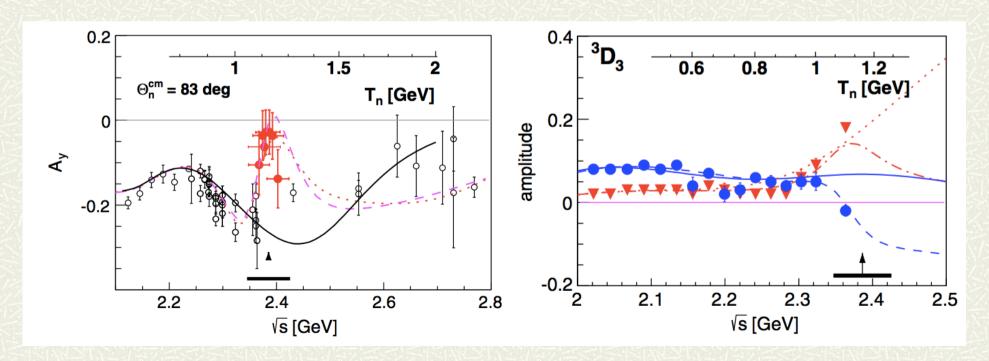

$$p + n(d) \rightarrow d + \pi^0 + \pi^0 \ (+p_{spectator}) \ at \ T_p=1.0, 1.2, 1.4 \ GeV$$

A di-baryon resonance, d^* (I=0, $J^{\pi}=3^+$) (in pn and $\Delta\Delta$) is confirmed.

WASA@COSY, PLB 721 (2013) 229

Isospin decomposition of the basic double-pionic fusion in the region of the ABC effect

The (I=1) production is consistent with the $\Delta\Delta$ production.

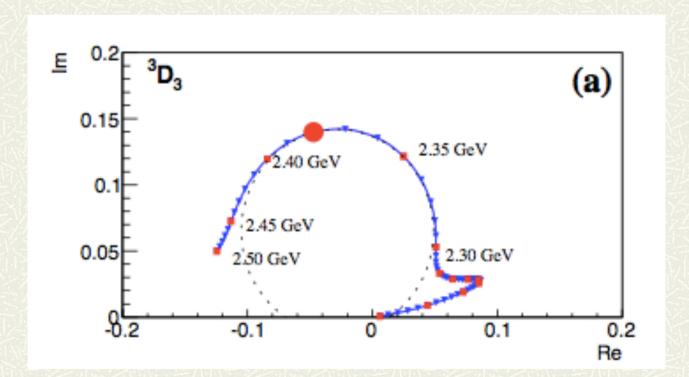

WASA@COSY+SAID, PRL 112, 202301 (2014)

Evidence for a new resonance from polarized n-p scattering

$$d(\uparrow) + p \rightarrow np + p_{\text{spectator}}$$

np analyzing power, $A_y(\theta)$, at $T_n=1.108-1.197$ GeV

A phase shift analysis of 3D_3 (3⁺) amplitudes shows a narrow resonance at M=2380 MeV and Γ ~70 MeV.


WASA@COSY+SAID, PRL 112, 202301 (2014)

Evidence for a new resonance from polarized n-p scattering

$$d(\uparrow) + p \rightarrow np + p_{\text{spectator}}$$

np analyzing power, $A_y(\theta)$, at $T_n=1.108-1.197$ GeV

A phase shift analysis of 3D_3 (3⁺) amplitudes shows a narrow resonance at M=2380 MeV and Γ ~70 MeV.

Conclusion

- **"Dibaryon"** is a long-standing but still exciting subject. Its existence should be correlated to the short-range baryonic interactions.
- **LQCD** has confirmed the Pauli effect and the CMI for the short-range baryon-baryon interactions.
- **The quark model symmetries,** $SU(6)_{sf}$ for the Pauli effect and $SU(3)_f$ for the CMI, give guideline for possible compact dibaryons.
- **♯** H (F=1) is the most-likely dibaryon.
- \Box D_{\(\Delta\)} =(\(\Delta\)\) (I=0, S=3) is another favorable state. The d* resonance at WASA-COSY is a strong candidate of a "compact" dibaryon.