Analysis of charged lepton flavor violation process $\mu^-e^- \rightarrow e^-e^-$ in muonic atoms

Yuichi Uesaka (Osaka U.)

Collaborators

T. Sato (Osaka U.)

J. Sato (Saitama U.)

Y. Kuno (Osaka U.) M. Yamanaka (Nagoya U.)

Contents

- 1. Introduction
 - ➤ Charged Lepton Flavor Violation (CLFV)
 - $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom
- 2. Formulation
 - ➤ Partial wave expansion
- 3. Results
 - ➤ Decay rates and Branching ratios
 - Model-discriminating power
- 4. Summary

1. INTRODUCTION

Lepton Flavor Violation

 \triangleright Three lepton flavor numbers (L_e, L_μ, L_τ)

	e^- , v_e	μ^- , $ u_{\mu}$	$ au^-$, $ au_ au$	others
L_e	+1	0	0	0
L_{μ}	0	+1	0	0
$L_{ au}$	0	0	+1	0

(Anti-leptons have a minus sign.)

- \blacktriangleright In SM, each lepton flavor # is strictly conserved. (e.g. $\mu^- \to e^- \nu_\mu \overline{\nu}_e$)
 - Neutrino oscillation violates the conservation.

(e.g.
$$\nu_{\mu} \rightarrow \nu_{\tau}$$
)

- The violation in charged lepton sector has not been observed yet.
 - → Charged Lepton Flavor Violation (CLFV)

e.g.
$$\mu \to e \gamma$$
, $\tau \to e \gamma$, $\tau \to e \pi^0$...

predicted in many models beyond SM

CLFV search using muons

Advantages of using muon for rare process

- 1. high intensity muon beam ($\sim 10^8$ muons per a second)
- 2. long lifetime and simple kinematics

Examples of CLFV processes using muons

BR: Branching Ratio

a)
$$\mu^+ \rightarrow e^+ \gamma$$

BR
$$\leq 5.7 \times 10^{-13}$$
 by MEG

Phys. Rev. Lett. 110 (2013) 201801.

b)
$$\mu^{+} \to e^{+}e^{-}e^{+}$$

$$\mathrm{BR} < 1.0 \times 10^{-12} \ \mathrm{by\ SINDRUM}$$

Nucl. Phys. B 299 (1988) 1.

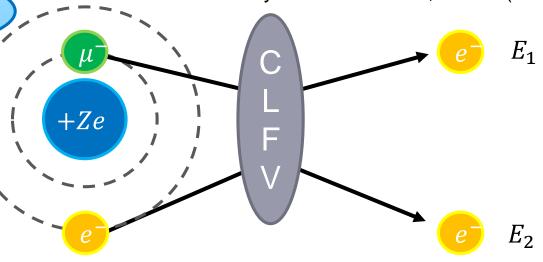
c)
$$\mu^- N \rightarrow e^- N$$

$$BR < 7 \times 10^{-13}$$

BR
$$< 7 \times 10^{-13}$$
 (μ^{-} Au $\rightarrow e^{-}$ Au) by SINDRUM II

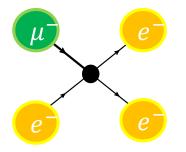
Eur. Phys. J. C 47 (2006) 337.

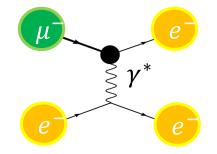
 $\mu^- Al \rightarrow e^- Al$ is planned to be measured by COMET experiment @ J-PARC. (COherent Muon to Electron Transition)


$\mu^-e^- ightarrow e^-e^-$ in a muonic atom

New CLFV search using muonic atoms

M. Koike, Y. Kuno, J. Sato and M. Yamanaka, Phys. Rev. Lett. 105,121601(2010)


proposed to be measured in **COMET**


R. Abramishili et al., COMET Phase-I Technical Design Report, KEK Report 2015-1 (2015)

Features

- clear signal : two e^- s $(E_1+E_2\simeq m_\mu+m_e-B_\mu-B_e)$
- 2 type interactions
 - ✓ µeee vertex
 - $\checkmark \mu e \gamma \text{ vertex}$

• atomic # Z : large \Rightarrow decay rate Γ : large $(\Gamma \propto (Z-1)^3)$

Previous estimation of decay rate

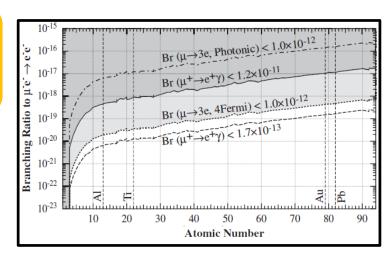
➤ Koike *et al.* Phys. Rev. Lett.105,121601(2010)

Suppose nuclear Coulomb potential is weak

$$\Gamma \sim \sigma v_{\rm rel} |\psi_{1S}^e(0)|^2 \propto (Z-1)^3$$

 σv_{rel} : cross section of $\mu^- e^- \rightarrow e^- e^-$ (free particles')

 $\psi_{1S}^{e}(x)$: Schrödinger wave function of a bound electron


Branching ratio

 ${\rm Br}(\mu^-e^- \to e^-e^-) \equiv \tilde{\tau}_\mu \Gamma(\mu^-e^- \to e^-e^-)$ $\tilde{\tau}_\mu$: lifetime of a muonic atom

increasing as atomic # Z is larger

Using muonic atom with large *Z* is favored.

Improved estimation of decay rate

Approximations used in the previous work

- The spreads of bound μ^- , e^- are sufficiently large.
- emitted e^- : plane wave
- bound electron : non-rela
 nucleus : point charge

Those approximations are expected to be worse for large Z.

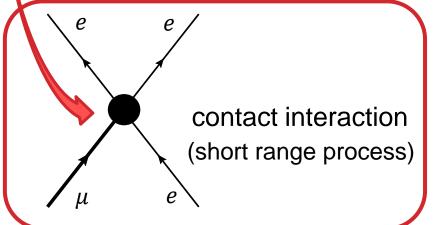
for more quantitative estimation

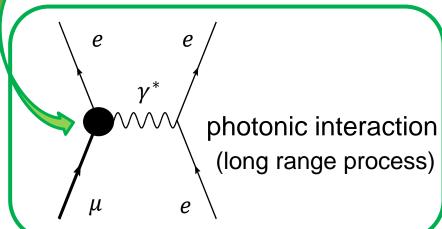
- ☐ treatment of leptons as relativistic Coulomb wave
 - **distortion** of emitted e^- s by nuclear Coulomb potential
 - relativistic treatment of bound leptons
 - nuclear charge distribution with a finite size

How will the decay rates be changed by this improvement?

2. FORMULATION

Effective Lagrangian


$$\mathcal{L}_{I} = \mathcal{L}_{contact} + \mathcal{L}_{photo}$$


$$\mathcal{L}_{contact} = g_{1}(\bar{e_{L}}\mu_{R})(\bar{e_{L}}e_{R}) + g_{2}(\bar{e_{R}}\mu_{L})(\bar{e_{R}}e_{L})$$

$$+ g_{3}(\bar{e_{R}}\gamma_{\mu}\mu_{R})(\bar{e_{R}}\gamma^{\mu}e_{R}) + g_{4}(\bar{e_{L}}\gamma_{\mu}\mu_{L})(\bar{e_{L}}\gamma^{\mu}e_{L})$$

$$+ g_{5}(\bar{e_{R}}\gamma_{\mu}\mu_{R})(\bar{e_{L}}\gamma^{\mu}e_{L}) + g_{6}(\bar{e_{L}}\gamma_{\mu}\mu_{L})(\bar{e_{R}}\gamma^{\mu}e_{R}) + [h.c.]$$

$$\mathcal{L}_{photo} = g_R \overline{e_L} \sigma^{\mu\nu} \mu_R F_{\mu\nu} + g_L \overline{e_R} \sigma^{\mu\nu} \mu_L F_{\mu\nu} + [h.c.]$$

Calculating method

Decay rate Γ

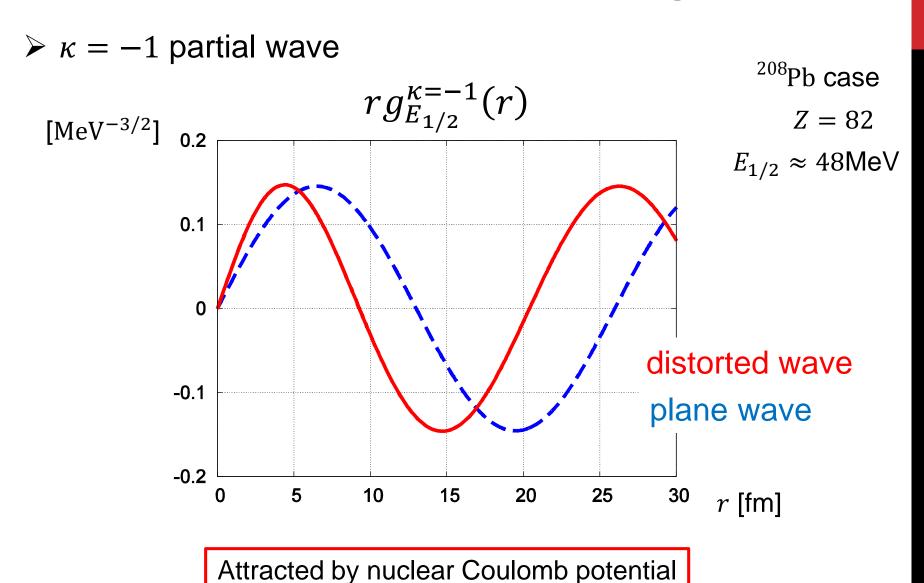
$$\Gamma = 2\pi \sum_{f} \sum_{\bar{\iota}} \delta(E_f - E_i) \left| \left\langle \psi_e^{s_1}(\boldsymbol{p}_1) \psi_e^{s_2}(\boldsymbol{p}_2) \middle| H \middle| \psi_{\mu}^{s_{\mu}}(1s) \psi_e^{s_e}(1s) \right\rangle \right|^2$$

use partial wave expansion to express the distortion

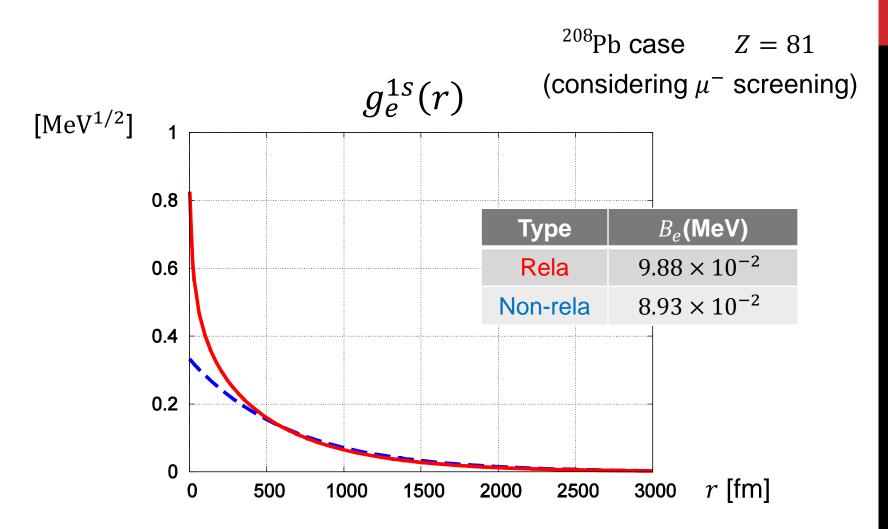
$$\psi_{e}^{p,s} = \sum_{\kappa,\mu,m} 4\pi \, i^{l_{\kappa}}(l_{\kappa}, m, 1/2, s | j_{\kappa}, \mu) Y_{l_{\kappa},m}^{*}(\hat{p}) e^{-i\delta_{\kappa}} \psi_{p}^{\kappa,\mu}$$

get radial functions by solving Dirac eq. numerically

$$\frac{dg_{\kappa}(r)}{dr} + \frac{1+\kappa}{r}g_{\kappa}(r) - (E+m+e\phi(r))f_{\kappa}(r) = 0$$


$$\frac{df_{\kappa}(r)}{dr} + \frac{1-\kappa}{r}f_{\kappa}(r) + (E-m+e\phi(r))g_{\kappa}(r) = 0$$

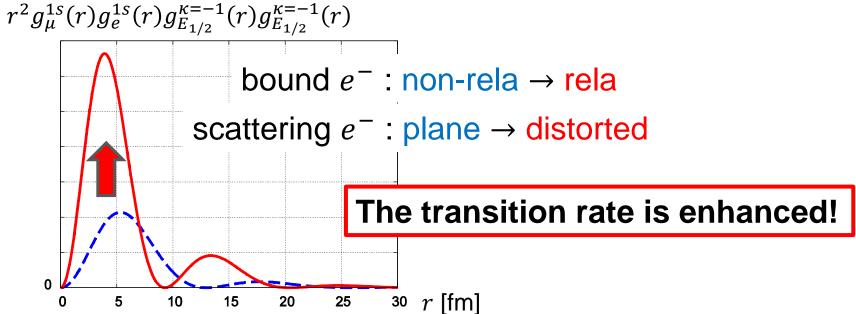
$$\psi(r) = \begin{pmatrix} g_{\kappa}(r)\chi_{\kappa}^{\mu}(\hat{r}) \\ if_{\kappa}(r)\chi_{-\kappa}^{\mu}(\hat{r}) \end{pmatrix}$$


 ϕ : nuclear Coulomb potential

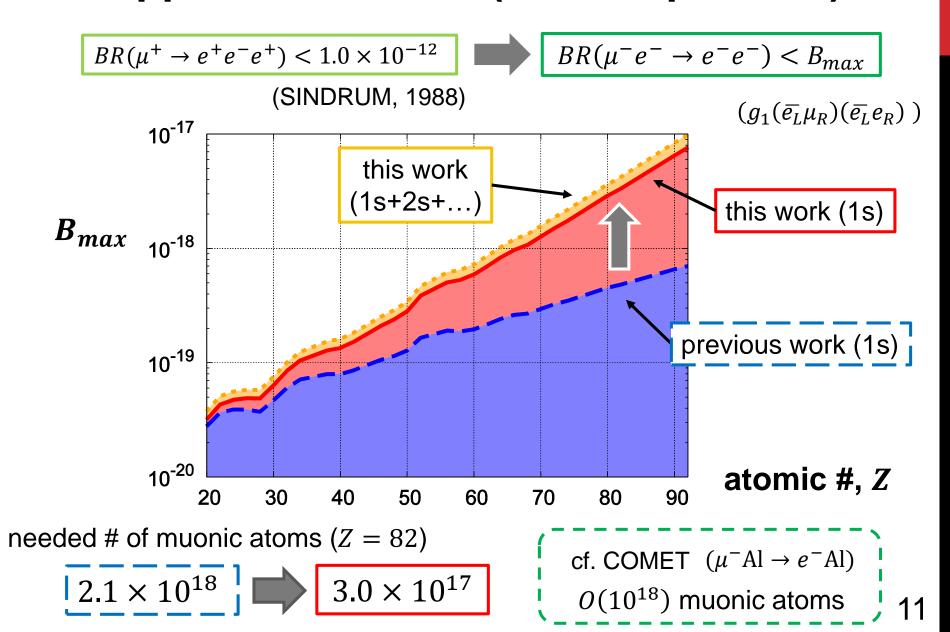
3. RESULTS

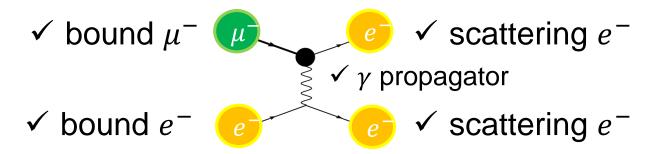
Radial functions (scattering e^-)

Radial functions (bound e^-)



Relativity enhances the value near the origin.


Contact process


lackloangle overlap of bound μ^- , bound e^- , and two scattering e^- s

Upper limits of BR (contact process)

Photonic process

lack overlap of bound μ^- , scattering e^- , and γ

$$r^{2}g_{\mu}^{1s}(r)g_{E_{1/2}}^{\kappa=-1}(r)j_{0}(q_{0}r)$$

$$scattering e^{-}:$$

$$plane \rightarrow distorted$$

$$0$$

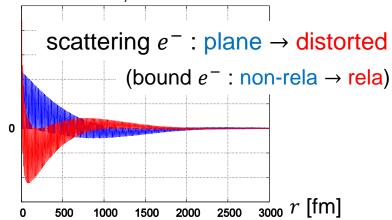
$$0$$

$$0$$

$$15$$

$$20$$

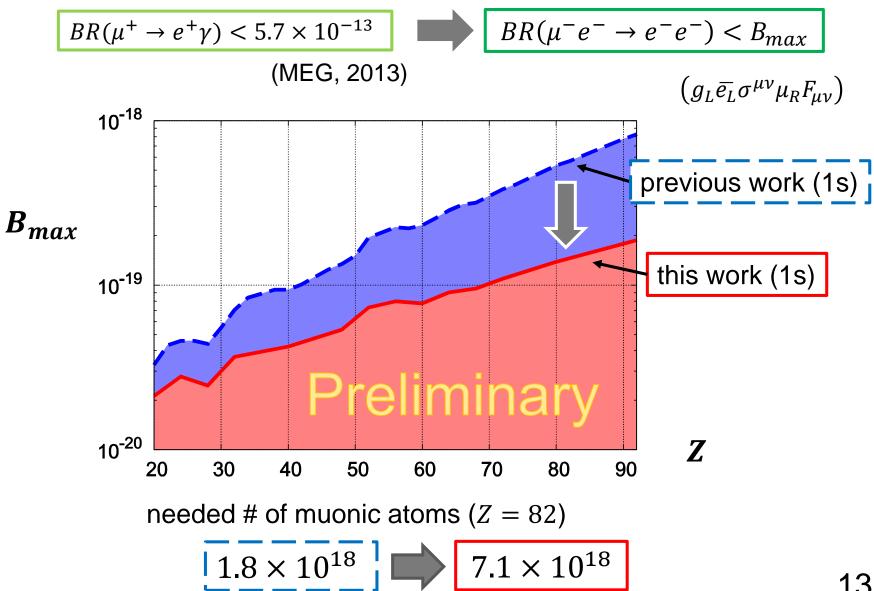
$$25$$


$$30$$

$$r$$

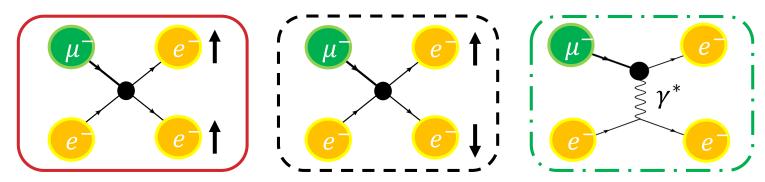
$$[fm]$$

• overlap of bound e^- , scattering e^- , and γ


$$r^2 g_e^{1s}(r) g_{E_{1/2}}^{\kappa=-1}(r) j_0(q_0 r)$$

The distortion makes these overlaps smaller.

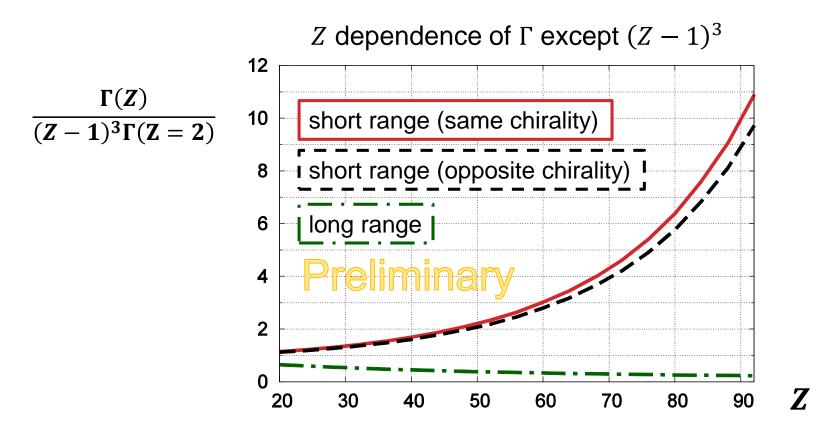
Upper limits of BR (photonic process)


Model-discriminating power

After finding CLFV transition, which CLFV interaction exists would be an important issue.

$$\mathcal{L}_{contact}^{\uparrow\uparrow} = g_1(\overline{e_L}\mu_R)(\overline{e_L}e_R) + g_2(\overline{e_R}\mu_L)(\overline{e_R}e_L) + g_3(\overline{e_R}\gamma_\mu\mu_R)(\overline{e_R}\gamma^\mu e_R) + g_4(\overline{e_L}\gamma_\mu\mu_L)(\overline{e_L}\gamma^\mu e_L) + [h.c.]$$

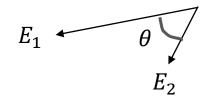
$$\left(\mathcal{L}_{contact}^{\uparrow\downarrow} = g_5(\overline{e_R}\gamma_\mu\mu_R)(\overline{e_L}\gamma^\mu e_L) + g_6(\overline{e_L}\gamma_\mu\mu_L)(\overline{e_R}\gamma^\mu e_R) + [h.c.]\right)$$

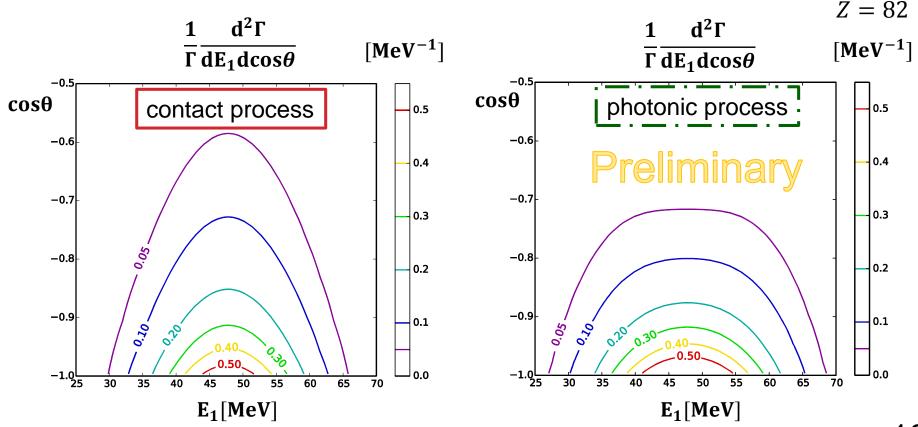

$$\mathcal{L}_{photo} = g_R \overline{e_L} \sigma^{\mu\nu} \mu_R F_{\mu\nu} + g_L \overline{e_R} \sigma^{\mu\nu} \mu_L F_{\mu\nu} + [h.c.]$$

Can experiments discriminate those?

Discriminating method 1

~ atomic # dependence of decay rates ~


- \succ The Z dependences are different among each interactions.
- Compared to $(Z-1)^3$, that of short range process is larger while that of long range process is smaller.


Discriminating method 2

~ energy and angular distributions ~

 E_1 : energy of an emitted electron

 θ : angle between two emitted electrons

4. SUMMARY

Summary

- $\mu^-e^- \rightarrow e^-e^-$ process in a muonic atom
 - ✓ interesting candidate for CLFV search
 - ✓ Our finding
 - Distortion of emitted electrons
 - Relativistic treatment of a bound electron are important in calculating decay rates.

- **c**ontact process : decay rate Enhanced (7 times in Z = 82)
- photonic process: decay rate suppressed (1/4 times in Z = 82)
- How to identify interaction types, found by this analyses
 - ✓ atomic # dependence of the decay rate
 - energy and angular distributions of emitted electrons