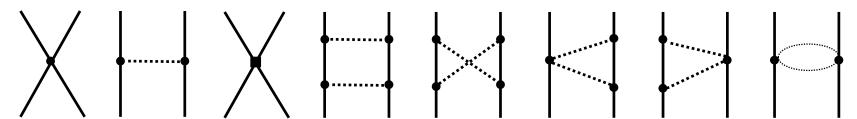
Λ , Σ , and Ξ hyperons in nuclear matter with NLO baryon-baryon interactions in chiral effective field theory M. Kohno, RCNP, Osaka University, Japan

Baryon-baryon interactions in chiral effective field theory (ChEFT)

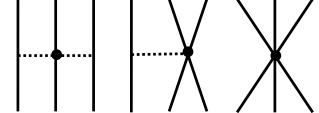
- S=0 (NN) sector: now standard for (low-energy) nuclear ab initio calculations (CCM, NCSM, GFMC, QMC, UMOA, ...)
 - Systematic introduction of 3NFs which are decisively important in describing nuclei.
- S=-1 sector: reasonable description of Λ and Σ properties in the medium
 - **Behavior** of U_{Λ} in NS matter possibility to resolve the hyperon puzzle
- S=−2 sector: scarce experimental data ⇒ large uncertainties in parameters
- It is important to explore Ξ properties in the medium described by the present NLO interactions, and compare them with forthcoming data.
- G-matrix calculations for Λ , Σ , and Ξ s.p. potentials in nuclear matter (NM)
 - $U_{\Xi}(k; k_F)$ in NM is translated to $U_{\Xi}(r; E)$ in ¹²C by a simple LDA
 - Apply it to calculate $(K^-, K^+) \equiv$ formation spectrum on ¹²C

Hyperon-nucleon interactions in chiral effective field theory

NLO diagrams $(\pi, K, \text{ and } \eta \text{ exchanges in SU(3)})$ Haidenbauer, Petschauer, Kaiser, Meißner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013)



- Leading three-baryon forces
- Petschauer, Kaiser, Haidenbauer, Meißner, and Weise, Phys. Rev. C93, 014001 (2016)
 - \triangleright Assume decouplet dominance for 1π -exchange and contact LECs.
 - > ENN is not considered in the present work.

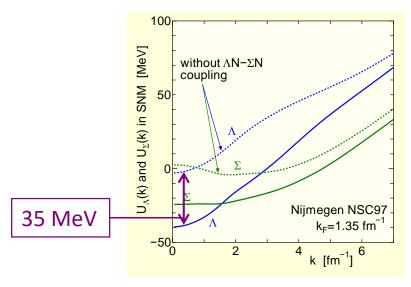


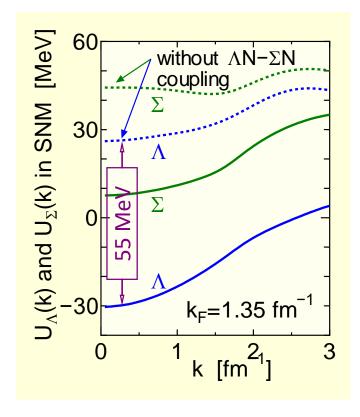
- The cutoff scale of ~ 600 MeV is not soft enough to use the interactions in a perturbative or HF method.
- High-momentum components are regularized by G-matrix equation with a continuous choice for intermediate spectra calculated self-consistently.

Λ and Σ s.p. potentials in SNM: NLO YN only

- N attraction comes from ΛN ΣN coupling, which is particularly large in Ch NLO.
 - \triangleright If the coupling is switched off, the \land s.p. potential is repulsive.
 - > The depth of $U_{\Lambda} \cong 30$ MeV is consistent with experimental data.

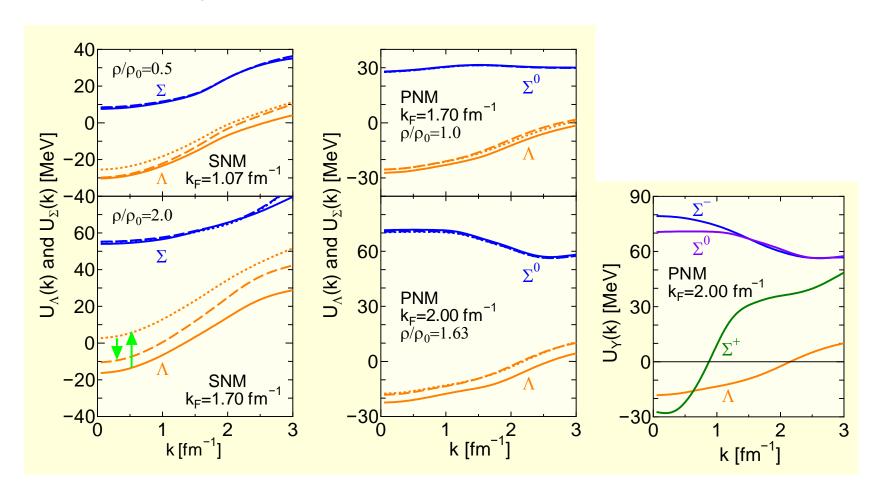
Cf. The case of Nijmegen NSC



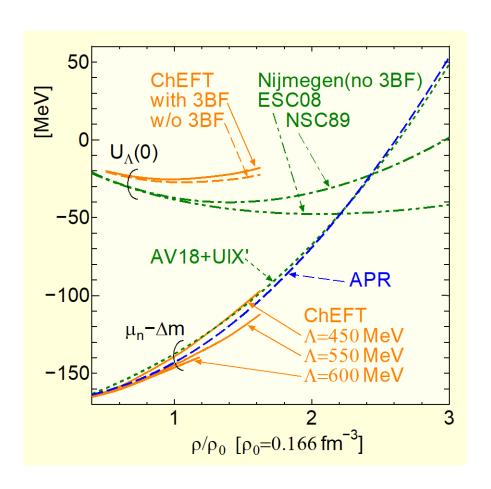


Λ and Σ s.p. potentials including 3BF in SNM and PNM

Solid: YN only, dotted: YN+ Λ NN, dashed: YN+ Λ NN+(Λ NN- Σ NN)



Density dependence of $U_{\Lambda}(k=0)$ in PNM



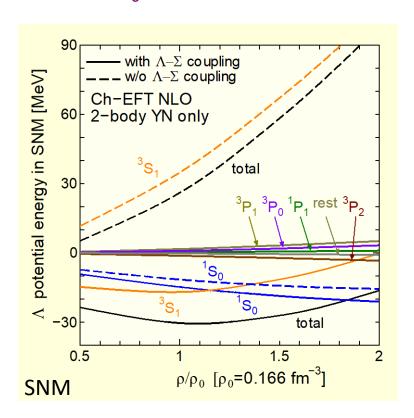
The threshold of the Λ appearance, if any, is shifted to a higher density area.

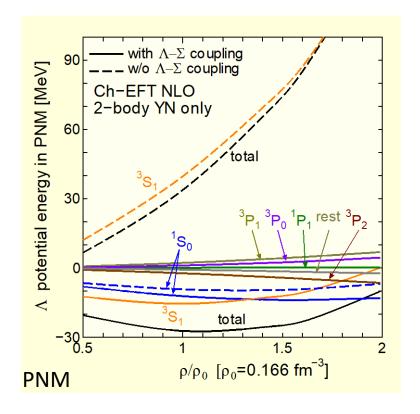
$$\mu_n = \frac{\hbar^2}{2m_n} (k_F^n)^2 + U(k_F^n)$$

Suggestive for resolving the hyperon puzzle.(NNLO is to be included in the future.)

Partial wave contributions to Λ potential in SNM and PNM

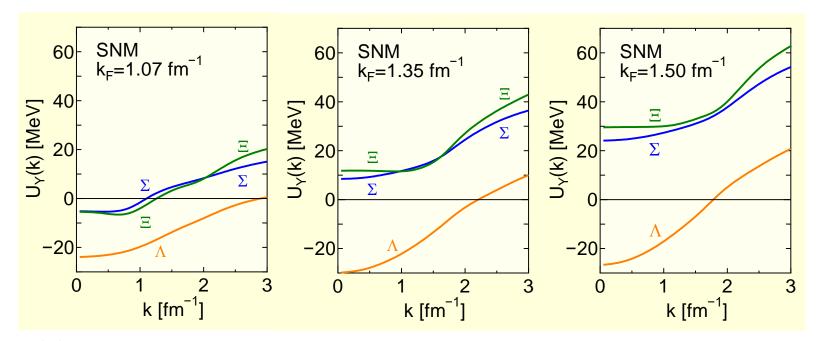
- The 3S_1 contribution before taking into account the ΛN-ΣN coupling is repulsive and strongly density dependent.
- Attractive ΛN - ΣN coupling effect is very large in the 3S_1 channel.
- The ¹S₀ contribution is attractive.





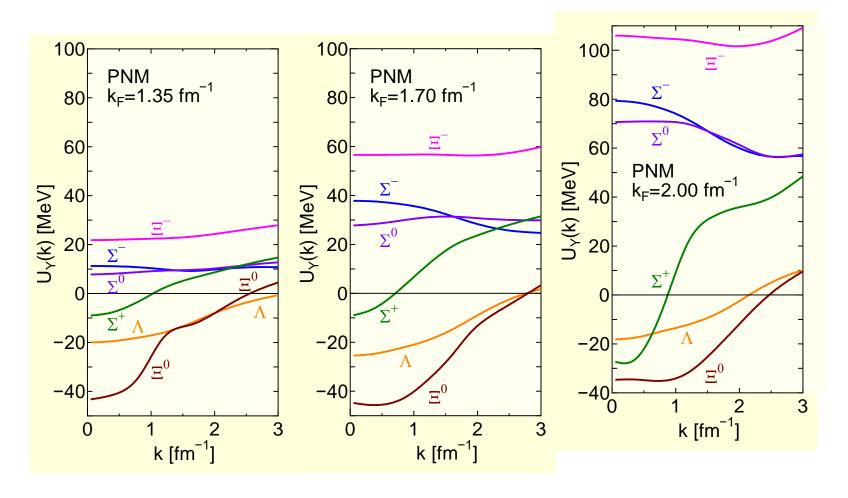
Ξ single-particle potential in symmetric nuclear matter

- On the basis of reasonable and promising results for the S=-1 sector, let us proceed forward to discuss the S=-2 sector.
 - \triangleright The present parameterization naturally has uncertainties in S=-2.
- G-matrix calculations with a continuous choice of intermediate spectra.
 - \triangleright N, Λ , and Σ s.p. potentials are those of ChEFT with 3BF effects.
- Ξ s.p. potential is attractive at low densities due to the T=0 3S_1 attraction, but the T=1 3S_1 repulsive contribution prevails in higher densities.



Ξ single-particle potential in pure neutron matter

> Strongly repulsive Ξ^- (and Σ^-) potential in PNM.



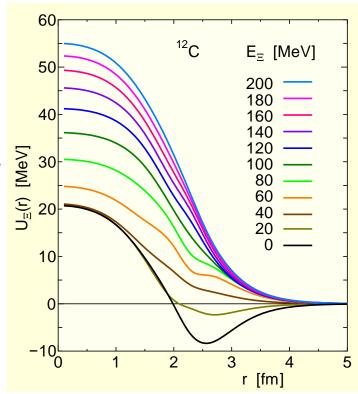
Ξ single-particle potential in ¹²C

- Estimation of the Ξ potential in finite nuclei by a simple LDA.
 - > Density distribution $\rho(r)$ | local Fermi mom. $k_F(r) = \left(\frac{3\pi^2\rho(r)}{2}\right)^{1/3}$
 - $\rightarrow U_{\Xi}(k, k_F)$ in NM $\rightarrow U_{\Xi}(E, k_F)$ in NM $\rightarrow U_{\Xi}(r) = U_{\Xi}(E, k_F(r))$ in 12 C

$$E = \frac{\hbar^2}{2m_{\Xi}}k^2 + U_{\Xi}(k, k_F)$$

Results

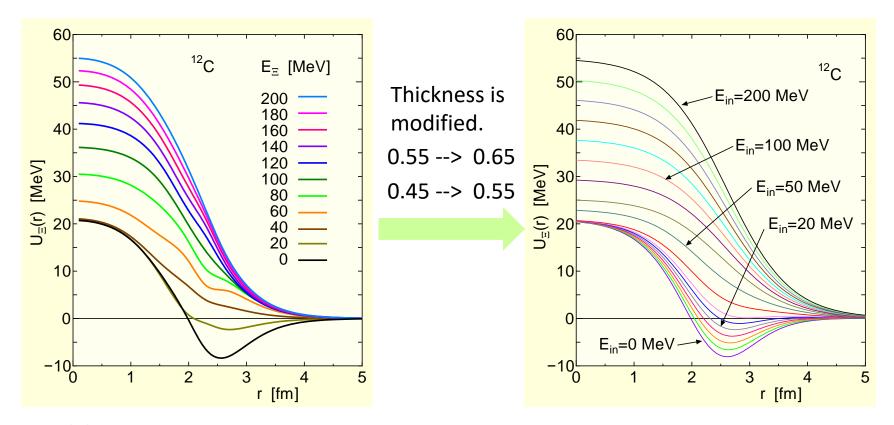
- Attractive pocket in a surface region at low energies.
- Surface thickness is not well accounted for because of the lack of finite range effects.
 - The usefulness of the simple LDA can be checked by comparing the results with those of the explicit folding potential of the two-body interaction.



Parametrization of the calculated $U_{\Xi}(\mathbf{r})$ in a Woods-Saxon form

$$U_{\Xi}(r) = V_1 \frac{1}{1 + \exp((r - 2.6)/0.55)} - V_2 \frac{\exp((r - 2.4)/0.45)}{[1 + \exp((r - 2.4)/0.45)]^2}$$

- $V_1 = 21$ MeV for $E \le 40$ MeV, $21 + \frac{34}{160}(E 40)$ MeV for $E \ge 40$ MeV.
- $V_2 = 78$ MeV for $E \le 0$ MeV, $\max\{78 1.25E, 0\}$ MeV for $E \ge 0$ MeV

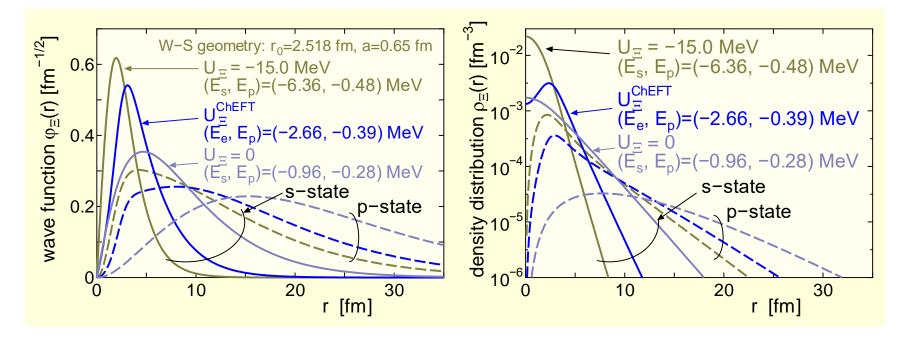


Ξ bound states in ¹²C with $U_{\Xi}(\mathbf{r})$ of ChEFT

Bound states of $U_{\Xi}(\mathbf{r}; E=0)$: Ξ^- Coulomb states are lowered.

	U _{coulomb} only		$U_{Coulomb}+U_{ChEFT}$	
state	E [MeV]	$\sqrt{\langle r^2 \rangle}$ [fm]	E [MeV]	$\sqrt{\langle r^2 \rangle}$ [fm]
<i>l</i> =0	-0.96	7.69	-2.66	4.37
l=1	-0.28	20.05	-0.39	13.55

U _{Coulomb} +WS(-15 MeV)				
state	E [MeV]	$\sqrt{\langle r^2 angle}$ [fm]		
<i>l</i> =0	-6.36	2.71		
<i>l</i> =1	-0.48	10.58		



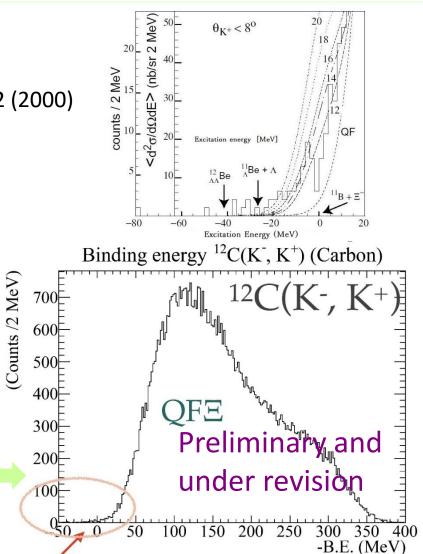
Experimental situation for the \(\mathbb{\Xi}\)-nucleus interaction

- BNL E885: ${}^{12}\text{C}(\text{K}^-,\text{K}^+)$ Khaustov *et al.*, Phys, Rev. C61, 054602 (2000)
 - ➤ No clear evidence of Ξ bound states (resolution is 14 MeV)
- Emulsion data (KEK373)

Kiso event: $\Xi^{-14}N$ $\Xi^{-+14}N \rightarrow {}^{10}{}_{\Lambda}Be^{+5}{}_{\Lambda}He$ $B_{\Xi}=1.03\pm0.18$ or 3.87 ± 0.21 MeV (Coulomb binding is 0.17 MeV)

J-PARC E05 run

12C(K⁻,K⁺) ≡ formation spectrum
at 1.8 GeV Nagae, HYP2018 ■
(mass resolution <2 MeV)



SCDW method for double differential cross section

Double differential cross section for $K^-N \to K^+\Xi$ ($ih \to fp$)

$$\frac{d^2}{dWd\sigma} = \frac{\omega_i \omega_f}{(2\pi)^2} \frac{p_f}{p_i} \sum_{p,h} \frac{1}{4\omega_i \omega_f} \left| \left\langle \chi_f^{(-)} \phi_p \left| v_{f,p,i,h} \right| \chi_i^{(+)} \phi_h \right\rangle \right|^2 \delta(W - \epsilon_p + \epsilon_h)$$

- > Semi-classical distorted wave approximation $\chi^*(r')\chi(r) = |\chi(R)|^2 e^{ik(R)\cdot(r-r')}$
- > Wigner transformation of the density matrix

$$\sum_{m_h} \phi_h(\mathbf{r}) \phi_h^*(\mathbf{r}') = \sum_{m_h} \phi_h(\mathbf{R} + \frac{1}{2}\mathbf{s}) \phi_h^*(\mathbf{R} - \frac{1}{2}\mathbf{s}) = \int d\mathbf{K} \, \Phi_h(\mathbf{R}, \mathbf{K}) e^{i \, \mathbf{K} \cdot \mathbf{s}}$$

SCDW expression of the double differential cross section

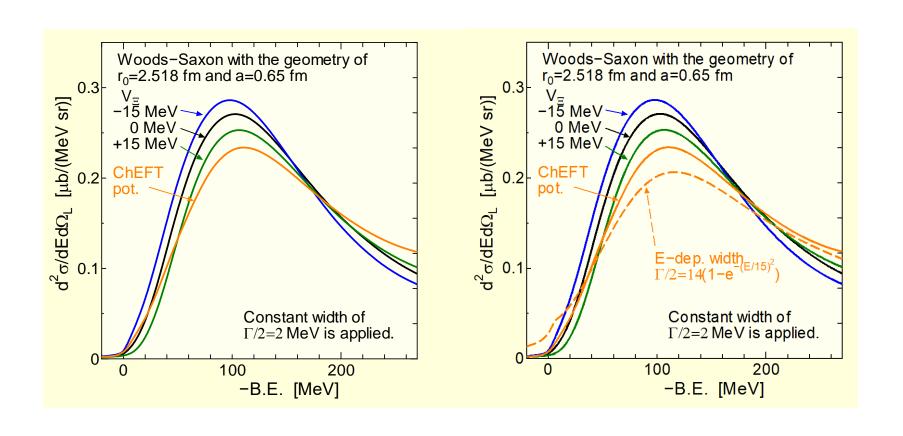
$$\frac{d^{2}}{dWd\sigma} = \frac{\omega_{i}\omega_{f}}{(2\pi)^{2}} \frac{p_{f}}{p_{i}} \xi^{6} \iint d\mathbf{R} d\mathbf{K} \sum_{p} \frac{1}{4\omega_{i}\omega_{f}} \left| \chi_{f}^{(-)}(\mathbf{R}) \right|^{2} \left| \chi_{i}^{(+)}(\mathbf{R}) \right|^{2} \left| \chi_{p}^{(-)}(\xi\mathbf{R}) \right|^{2}$$

$$\times \left| v_{f,p,i,h} \right|^2 \frac{(2\pi)^3}{\xi^3} \sum\nolimits_h \Phi_h \left(\xi \boldsymbol{R}, \frac{1}{\xi} \boldsymbol{K} \right) \delta(\boldsymbol{K} + \boldsymbol{k}_i(\boldsymbol{R}) - \boldsymbol{k}_f(\boldsymbol{R}) - \boldsymbol{k}_p \left(\boldsymbol{R} \right)) \delta(\boldsymbol{W} - \boldsymbol{\epsilon}_p + \boldsymbol{\epsilon}_h)$$

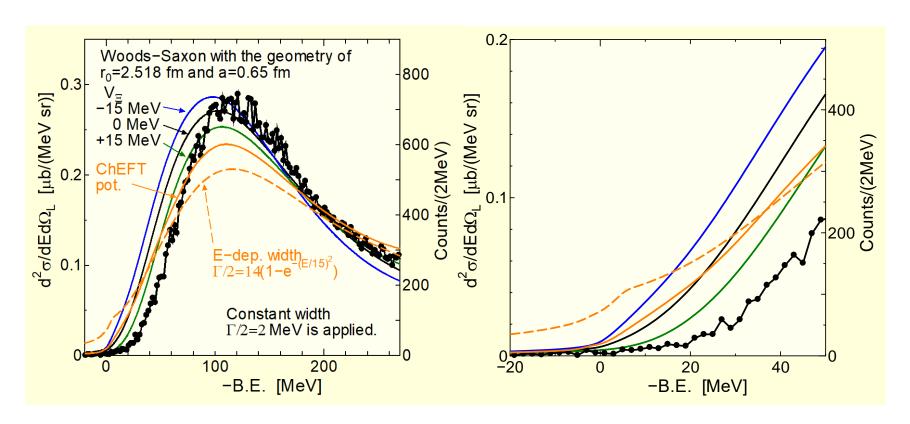
S. Hashimoto, M. Kohno, K. Ogata and M. Kawai, Prog. Theor. Phys. 119, 1005-1027 (2008)

 $\delta(W-\epsilon_p+\epsilon_h)$

Calculated ${}^{12}C(K^-,K^+) \equiv$ formation spectrum



Calculated $^{12}C(K^-,K^+) \equiv$ formation spectrum



Experimental data will change. Cross section data is needed, instead of counts.

Summary

- - $ightharpoonup \Lambda$ hyperon: attraction decreases with increasing the density (due to the behavior of 3S1 contributions and Pauli blocking), which is suggestive for resolving the hyperon puzzle.
 - $\triangleright \Sigma$ hyperon: strongly repulsive Σ^- potential in neutron matter
- Ξ s.p. potential: attractive at low density and repulsive at high density
 - \triangleright Ξ potential in finite nuclei is estimated by a simple LDA.
 - > Attractive potential at a low-density surface region. ($E_{0s} = -2.66$ MeV)
 - > With increasing the energy, the potential becomes repulsive.
 - > ¹²C(K⁻,K⁺) spectrum is calculated by the SCDW method, using the calculated Ξ potential. (Experimental data is under revision.)
- Ξ properties calculated using ChEFT baryon-baryon interactions are to be confronted with coming experimental data.
 - > Possibility to reduce the uncertainties of the coupling and low-energy constants.