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with NLO baryon-baryon interactions

in chiral effective field theory
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Baryon-baryon interactions in chiral effective field theory (ChEFT)

S=0 (NN) sector: now standard for (low-energy) nuclear ab initio
calculations (CCM, NCSM, GFMC, QMC, UMOA, ...)

Systematic introduction of 3NFs which are decisively important in describing
nuclei.

S=—1 sector: reasonable description of A and X properties in the medium
Behavior of U , in NS matter possibility to resolve the hyperon puzzle
S=—2 sector: scarce experimental data  large uncertainties in parameters

It is important to explore = properties in the medium described by the
present NLO interactions, and compare them with forthcoming data.
G-matrix calculations for A, X, and = s.p. potentials in nuclear matter (NM)
U=(k; kz) in NM is translated to U(r; E) in 12C by a simple LDA
Apply it to calculate (K_,K+) = formation spectrum on 12C



Hyperon-nucleon interactions in chiral effective field theory

NLO diagrams (mr, K, and 71 exchanges in SU(3) )
Haidenbauer, Petschauer, Kaiser, MeilRner, Nogga, and Weise, Nucl. Phys. A915, 24 (2013)

Leading three-baryon forces

Petschauer, Kaiser, Haidenbauer, MeiRner, and Weise, Phys. Rev. C93, 014001 (2016)
» Assume decouplet dominance for 1m-exchange and contact LECs.

» ZNN is not considered in the present work.

The cutoff scale of ~600 MeV is not soft enough to use the interactions in a
perturbative or HF method.

High-momentum components are regularized by G-matrix equation with a
continuous choice for intermediate spectra calculated self-consistently.
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A and % s.p. potentials in SNM: NLO YN only

AN attraction comes from AN -ZN coupling,

which is particularly large in Ch NLO.

» If the coupling is switched off, the A s.p.

potential is repulsive.

> The depth of U, = 30 MeV is consistent
with experimental data.

35 MeV

Cf. The case of Nijmegen NSC
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A\ and 2 s.p. potentials including 3BF in SNM and PNM

Solid: YN only, dotted: YN+ANN, dashed: YN+ANN+(ANN-ZNN)
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Density dependence of U,(k=0) in PNM
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p/po [pg=0.166fm 7]

The threshold of the A
appearance, if any, is shifted
to a higher density area.

2

2my,

Hn = (kF)? + U(kR)

Suggestive for resolving the
hyperon puzzle.

(NNLO is to be included in
the future.)



Partial wave contributions to A potential in SNM and PNM

The 3S, contribution before taking into account the AN-ZN coupling is

repulsive and strongly density dependent.
Attractive AN-ZN coupling effect is very large in the 3S, channel.

The 1S, contribution is attractive.
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= single-particle potential in symmetric nuclear matter

On the basis of reasonable and promising results for the S = —1 sector, let
us proceed forward to discuss the S = —2 sector.
»> The present parameterization naturally has uncertainties in § = —2.

G-matrix calculations with a continuous choice of intermediate spectra.
> N, A, and X s.p. potentials are those of ChEFT with 3BF effects.
E s.p. potential is attractive at low densities due to the T=0 3S, attraction,

but the T=1 3S, repulsive contribution prevails in higher densities.

60 SNM y . 60F SNM y . 60- SNM y :
| Ke=1.07 fm | | ke=1.35fm | | Kke=1.50 fm ‘
';‘ 40 7] - /
(] ] _ — _
=
= 20 . > :
4
=
- 0
~20F -20F -20
0 1 2 3 0 1 2 3 0 1 2 3
k [fm ] k [fm ] k [fm™]

2018/10/12 Tokai



= single-particle potential in pure neutron matter

> Strongly repulsive = (and T ) potential in PNM.
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= single-particle potential in *2C

Estimation of the = potential in finite nuclei by a simple LDA.

3n2p(r)) />
» Density distribution p(7) local Fermi mom. kg(r) = ( 5 )

> Uz(k,kp) inNM  Uz(E,kp) inNM  U=(r) = Uz(E, kg(r)) in 2C

gt k2 + U_(k, kp) ”
2ms F Results | P Ez MeV]
Attractive pocket in a surface region at - o
. 40r 160 —
low energies. I 140 —
— 1 —_—
. . >

Surface thickness is not well accounted for 2 30 100 —

because of the lack of finite range effects. < 20} \\ 28
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S
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» The usefulness of the simple LDA can 10: \ ©

be checked by comparing the results
0

with those of the explicit folding

potential of the two-body interaction. % 1 2 3 4
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Parametrization of the calculated U-(r) in a Woods-Saxon form

1 exp((r—2.4)/0.45)
1 {t+exp((r-2.6)/0.55) 2 [1+exp((r—2.4)/0.45)]2

U(r) =V

Vi = 21 MeV for E < 40 MeV, 21 + = (E — 40) MeV for E > 40 MeV.
V, = 78 MeV for E < 0 MeV, max{78 — 1.25E, 0} MeV for E > 0 MeV
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= bound states in 12C with U(r) of ChEFT

Bound states of U=(r; E = 0): Z~ Coulomb states are lowered.
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Experimental situation for the Z-nucleus interaction
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SCDW method for double differential cross section

Double differential cross section for KN - K™= (ih - fp)

d? WiWs Df - -
dWdo = (2n)2 24(» iy < Xr ¢p‘vfplh Xi ¢h>‘ oW — €, + €n)

Xl Xf
» Semi-classical distorted wave approximation

. , Vipin)@r o«
X (D x(r) = |x(R)|?e*® =1 A_/‘\

h
» Wigner transformation of the density matrix 3(W—e,+ep,)

Zimy Pr (TP (') = Loy, (R + %S)¢;1(R - %S) = [ dK ®,(R,K)e' X

SCDW expression of the double differential cross section

d2 a)l-a)f pf 6
— deKE
dWdo — (2m)? p; J jf 4wy Xp

2m)3 1
X |vf'p:i,h |2 (ELg)zhCDh (ER,EK> S(K + k;(R) — ks(R) —k,, (R))S(W — €, + €p)

S. Hashimoto, M. Kohno, K. Ogata and M. Kawai, Prog. Theor. Phys. 119, 1005-1027 (2008)
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Calculated 12C(K_,KJF) = formation spectrum
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Calculated 12C(K~,K") = formation spectrum

T T T T T T T T T T T T T
Woods-Saxon with the geometry of
rp=2.918 fm and a=0.65 fm

Constant width
['2=2MeV is applied.

1800

1600

0

1 1 1 ]
100 200
~B.E. [MeV]

Experimental data will change.

Cross section data is needed, instead of counts.

Counts/(2MeV)
d°/dEAQ, [ub/(MeV sr)]

0.2

0.1

-20

20 40
-B.E. [MeV]

400

200

Counts/(2MeV)



Summary

A, X2, and = s.p. potentials are calculated in nuclear matter, using the
present NLO YN interactions in chiral effective field theory

» A\ hyperon: attraction decreases with increasing the density (due to the
behavior of 351 contributions and Pauli blocking), which is suggestive for
resolving the hyperon puzzle.

> X hyperon: strongly repulsive ¥ potential in neutron matter

= s.p. potential: attractive at low density and repulsive at high density

» = potential in finite nuclei is estimated by a simple LDA.

» Attractive potential at a low-density surface region. (Ey; = —2.66 MeV)
» With increasing the energy, the potential becomes repulsive.

> 12C(K_,KJF) spectrum is calculated by the SCDW method, using the
calculated = potential. (Experimental data is under revision.)

= properties calculated using ChEFT baryon-baryon interactions are to
be confronted with coming experimental data.

» Possibility to reduce the uncertainties of the coupling and low-energy
constants.
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