Equation of state for hyperonic nuclear matter and its application to compact astrophysical objects

H. Togashi (RIKEN)

Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, K. Sumiyoshi, E. Hiyama

Outline

1: Introduction

2: Supernova EOS with realistic nuclear forces

3: Supernova EOS with Λ hyperon

4: Application to compact stars

International workshop on "Hadron structure and interaction in dense matter" @ KEK Tokai campus, November 12, 2018

1. Introduction

Neutron star structure is governed by

the nuclear equation of state (EOS) at zero temperature.

Neutron Stars: Stiffness (EOS at 0 MeV) ⇔ Self-gravity

Mass-radius relation of cold neutron stars

P. B. Demorest et al., NATURE 467 (2010)

Phase diagram of cold nuclear matter

Nuclear EOS and Core-Collapse Supernovae

Nuclear EOS at finite temperature is one of the crucial ingredients for the numerical simulations of Core-Collapse Supernovae.

Nuclear EOS for supernova simulations

- SN-EOS should provide thermodynamic quantities in the wide ranges.

- Temperature $T: 0 \le T \le 100 \text{ MeV}$
- Density $\rho: 10^{5.1} \le \rho_{\rm B} \le 10^{16.0} {\rm g/cm^3}$
- Proton fraction $Y_p: 0 \le Y_p \le 0.65$

- SN matter contains uniform and non-uniform phases.

Phase diagram of nuclear matter [based on HT et al., NPA 961 (2017) 78]

Current status of SN-EOS with hyperons

Nuclear	$n_{ m sat}$	BE/A	K	\overline{Q}	J	L	type of int.	used in
Interaction	$({\rm fm}^{-3})$	(MeV)	(MeV)	$\left(\frac{\text{MeV}}{\text{fm}^3}\right)$	(MeV)	(MeV)		SN-EOS list by M. Hempel
SKa	0.155	16.0	263	-300	32.9	74.6	Skyrme	H&W Hyperon EOS
LS180	0.155	16.0	180	-451	28.6	73.8	Skyrme	LS180 Hyperon LOS
LS220	0.155	16.0	220	-411	28.6	73.8	Skyrme	LS220 LS220 Λ , LS220 π
LS375	0.155	16.0	375	176	28.6	73.8	Skyrme	LS375
TMA	0.147	16.0	318	-572	30.7	90.1	RMF	HS(TMA)
NL3	0.148	16.2	272	203	37.3	118.2	RMF	SHT, HS(NL3)
FSUgold	0.148	16.3	230	-524	32.6	60.5	RMF	SHO(FSU1.7), HS(FSUgold)
FSUgold2.1	0.148	16.3	230	-524	32.6	60.5	RMF	SHO(FSU2.1)
IUFSU	0.155	16.4	231	-290	31.3	47.2	RMF	HS(IUFSU)
DD2	0.149	16.0	243	169	31.7	55.0	RMF	HS(DD2), BHBΛ, BHBΛφ
\mathbf{SFHo}	0.158	16.2	245	-468	31.6	47.1	RMF	SFHo
SFHx	0.160	16.2	239	-457	28.7	23.2	\mathbf{RMF}	SFHx
TM1	0.145	16.3	281	-285	36.9	110.8	RMF	STOS, FYSS, HS(TM1) STOSA
								STOSY, STOSY π , STOS π , STOS π Q,
								STOSQ, STOSB139, STOSB145,
								STOSB155, STOSB162, STOSB165

There is no SN-EOSs based on the microscopic many-body theory.

- Shen EOS with Λ , Σ , Ξ [$M_{\text{max}} = 1.67 M_{\odot}$] (C. Ishizuka et al., JPG 35 (2008) 085201)
- Shen EOS with Λ [$M_{\text{max}} = 1.75 M_{\odot}$] (H. Shen et al., APJS 197 (2011) 20)
- LS EOS with Λ $[M_{\text{max}} = 1.91 M_{\odot}]$ (M. Oertel et al., PRC 85 (2012) 055806)
- **DD2 EOS with A** $[M_{\text{max}} = 2.11 M_{\odot}]$ (S. Banik et al., APJS 214 (2014) 22)
- **DD2 EOS with \Lambda, \Sigma, \Xi [M_{\text{max}} = 2.04 M_{\odot}]** (M. Marques et al., PRC 96 (2017) 045806)

New EOS table for core-collapse simulations

http://www.np.phys.waseda.ac.jp/EOS/

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA961 (2017) 78)

Baryon mass density $\log_{10}(\rho_{\rm B})$ [g/cm³]

1: Cluster variational method with AV18 + UIX potentials

2: Thomas-Fermi calculation for non-uniform matter

We aim to extend the microscopic EOS table to consider A hyperon mixing.

2. Supernova EOS with realistic nuclear forces

Uniform EOS: Cluster variational method with AV18 + UIX potentials Non-uniform EOS: Thomas-Fermi method

$n_0[\text{fm}^{-3}]$	E_0 [MeV]	K [MeV]	$E_{\text{sym}}[\text{MeV}]$
0.16	-16.1	245	30.0

Our EOS: HT and M. Takano, NPA 902 (2013) 53

APR: A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804

Shen EOS: APJS 197 (2011) 20

Application to Neutron Star

Mass-Radius relation of neutron stars

J0348+0432: Science 340 (2013) 1233232

J1614-2230: Nature 467 (2010) 1081

Shaded region is the observationally suggested region by Steiner et al.

HT et al., NPA 961 (2017) 78

(Astrophys. J. 722 (2010) 33)

Application to Core-Collapse Supernovae

1D neutrino-radiation hydrodynamics simulations

Progenitor: Woosley Weaver 1995, $15M_{\odot}$ Astrophys. J. Suppl. 101 (1995) 181 SN simulation numerical code: K. Sumiyoshi, et al., NPA 730 (2004) 227

Radial trajectories of mass elements

HT et al., in preparation

Central density: 0.30 fm⁻³

Temperature: ~10 MeV

Proton fraction: ~0.3

Application to Proto-Neutron Star Cooling

K. Nakazato, H. Suzuki, and HT, Phys. Rev. C 97 (2018) 035804

1D neutrino-radiation hydrodynamics simulations (until 300 ms)

→ Quasi-static evolutionary calculation of PNS cooling

Central density: 0.47 fm⁻³

Temperature: ~10 MeV

Proton fraction: ~0.1

3. Supernova EOS with Λ hyperons

Two-body Hamiltonian

$$H_2 = -\sum_{i} \frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i < j} \left[V_{ij}^{\text{NN}} + V_{ij}^{\Lambda \text{N}} + V_{ij}^{\Lambda \Lambda} \right]$$

 V_{ii}^{NN} : Argonne v18 (AV18) potential

Hyperon Two-Body Central Potentials

 $V_{ii}^{\Lambda N}$: Λ -Nucleon (N) potential (E. Hiyama et al., PRC 74 (2006) 054312)

- Constructed so as to reproduce the experimental binding energies of light Λ hypernuclei with the Gaussian expansion method.

 $V_{ii}^{\Lambda\Lambda}: \Lambda-\Lambda$ potential

(E. Hiyama et al., PRC 66 (2002) 024007)

- the experimental double- Λ binding energy from $^{6}_{\Lambda\Lambda}He$ (NAGARA event)

 E_2 : Expectation value of H_2 in the two-body cluster approximation

Expectation value of the Hamiltonian

Jastrow wave function
$$\Psi = \operatorname{Sym} \left[\prod_{i < j} f_{ij} \right] \Phi_{F}$$
 The Fermi-gas wave function

Correlation function:

$$f_{ij} = \sum_{\mu,p,s} [f^{\mu}_{\mathrm{C}ps}(r_{ij}) + s f^{\mu}_{\mathrm{T}p}(r_{ij}) S_{\mathrm{T}ij} + s f^{\mu}_{\mathrm{SO}p}(r_{ij}) (\boldsymbol{L}_{ij} \cdot \boldsymbol{s})] P^{\mu}_{psij}$$

$$p: \text{parity} \quad s: \text{two-particle total spin} \quad \mu: \text{particle pair}$$

Cluster-expansion

$$\frac{\langle H_2 \rangle}{N} = \frac{1}{N} \frac{\langle \Psi \mid H_2 \mid \Psi \rangle}{\langle \Psi \mid \Psi \rangle} = \frac{\langle H_2 \rangle_2}{N} + \frac{\langle H_2 \rangle_3}{N} + \cdots$$

 E_2 is the expectation value of H_2 in the two-body cluster approximation with the Jastrow wave function.

Three-Body Energy

Nuclear EOS (previous study)

$$\frac{E_3}{N} = \frac{1}{N} \langle \sum_{i < j < k}^{N} \left[\alpha V_{ijk}^{\mathrm{R}} + \beta V_{ijk}^{2\pi} \right] \rangle_{\mathrm{F}} + \gamma n_{\mathrm{B}}^2 e^{-\delta n_{\mathrm{B}}} \left[1 - (1 - 2Y_{\mathrm{p}})^2 \right]$$
Correction term

Modified expectation value of H_3 with $\Phi_{\rm F}$

Repulsive part of UIX pot. is extended to the potential for Hyperon TBF

$$V_{ijk}^{\mathrm{R}} = \sum_{\mu} \alpha^{\mu} V_{ijk}^{\mathrm{R}} P_{ijk}^{\mu} \quad (\mu = \mathrm{NNN}, \Lambda \mathrm{NN}, \Lambda \Lambda \Lambda, \Lambda \Lambda \Lambda)$$

 P_{iik}^{u} : Three-particle projection operator

 α^{NNN} : we use the value in the nuclear EOS

(Saturation properties + Thomas-Fermi calculation for atomic nuclei)

 $\alpha^{\Lambda NN}$. $\alpha^{\Lambda \Lambda N}$, $\alpha^{\Lambda \Lambda \Lambda}$: Free parameters $(0 \le \alpha^{\mu} \le \alpha^{NNN})$

Free energy for Λ hyperon matter

Total energy per baryon: $E(n_B, x_p, x_\Lambda) = E_2 + E_3$

Baryon number density : $n_B = n_p + n_n + n_\Lambda$ Particle fraction: $x_i = n_i/n_B$ $(i = p, \Lambda)$

The prescription by Schmidt and Pandharipande is employed to obtain the free energy *at finite temperature*.

Single particle potential for Λ particle

Total energy per baryon: $E(n_B, x_p, x_\Lambda) = E_2 + E_3$

 $-32~{\rm MeV} \le \mu_{\Lambda} \le -28~{\rm MeV} \rightarrow 0.266 \le \alpha^{\Lambda \rm NN}/\alpha^{\rm NNN} \le 0.475$

Chemical potential of Λ : μ_{Λ}

4. Application to Compact Stars J0348+0432 $\alpha^{\Lambda\Lambda N} = \alpha^{\Lambda\Lambda\Lambda} = 0$ 2.0 J1614-2230 ⊙ 1.5¹ W/W 0.1 Nuclear Matter- χ_{Λ} 1.0 0.01 w/o Hyperon 3BF w/o Hyp. 3BF $\alpha^{\Lambda\Lambda N} = \alpha^{\Lambda\Lambda\Lambda} = 0$ 0.5 0.0010.0 0.2 0.4 0.6 0.8 0.0 $n_{\rm B} \, [{\rm fm}^{-3}]$ 2.5 J0348+0432 2.0 $\alpha^{\Lambda\Lambda N} = \alpha^{\Lambda\Lambda\Lambda} = \alpha^{NNN}$ J1614-2230 ⊙ 1.5¹ 0.1 1.0 0.01 $\alpha^{\Lambda\Lambda N} = \alpha^{\Lambda\Lambda\Lambda} = \alpha^{NNN}$ 0.5 0.001 0.0 0.2 0.4 0.6 0.8 0.0 8 10 12 14 16 18 6 $n_{\rm B} \, [{\rm fm}^{-3}]$ *R* [km]

AAN and AAA three-body forces

•
$$\mu_{\Lambda} = -30 \text{ MeV}$$
 $(\alpha^{\Lambda NN} = 0.370 \alpha^{NNN})$

 $\Lambda\Lambda N$ and $\Lambda\Lambda\Lambda$ three-body force: affect on the maximum mass of neutron stars (Important for HYPERON PUZZLE!?)

Hyperon mixing in supernova matter

Supernova matter

- Charge neutral and Isentropic matter (The entropy per baryon $S \sim 1-2$)
- Neutrino-free β -stable matter

Summary

We construct the EOS for nuclear matter including Λ hyperons at zero and finite temperatures by the variational method.

Application of the EOS to compact stars

- Λ NN three-body force: affects on the single-particle potential and the onset density of Λ hyperon mixing
- $\Lambda\Lambda N$ and $\Lambda\Lambda\Lambda$ three-body forces: affect on the maximum mass of neutron stars (Important for HYPERON PUZZLE!?)
- Λ hyperon fraction in supernova matter becomes larger at higher entropies.

Future Plans

- Construction of the EOS table for core-collapse simulations
- Taking into account mixing of other hyperons $(\Sigma^-, \Sigma^0, \Sigma^+, \Xi^0, \Xi^-)$
- Employing more sophisticated baryon interactions (e.g. Nijmegen)
- → we extend the cluster variational method to take into account coupled channels. (Poster presentation in QNP 2018)