Heavy hadrons (charm, beauty) in nuclei

Laura Tolós

Institute of Space Sciences Sciences

International workshop on **"Hadron structure and interaction in dense matter"** (Satellite workshop of QNP2018) KEK Tokai campus, November 11-12, 2018

Charm in Matter

Unitarized theory in matter:

selfconsistent coupled-channel procedure

Unitarized theory in matter

selfconsistent coupled-channel procedure

(bare interaction saturated by t-channel vector-meson exchange)

Meson-baryon interaction with heavy quarks: Incorporate Heavy-Quark Spin Symmetry

HQSS*: spin interactions vanish for infinitely massive quarks

*Isgur, Wise, Manohar, Neubert

To construct a model for four flavors for pseudoscalar and vector mesons as well as 1/2⁺ and 3/2⁺ baryons that incorporates HQSS in the charm sector: extended WT interaction that fulfills SU(6)xHQSS and it is consistent with chiral symmetry in the light sector

$$V = \frac{K(s)}{4f^2} H'_{\rm WT}, \qquad H'_{\rm WT} = H_{\rm ex} + H'_{\rm ac}.$$

K(s): depends on meson-baryon energy f: decay constant

H_{ex}: exchange of quarks H'_{ac}: annhilation and creation of quarkantiquark pairs, corrected with HQSS constraints (only light quarks)

Spectroscopy of excited charmed baryons

Renormalization with one subtraction Common cutoff regularization

$G_i(s) = \overline{G}_i(s) - (1-x)\overline{G}_i(\mu^2) + xG_i^{\Lambda}(s_{i+1})$

 $\Lambda = 1090 \text{ MeV}$

Name	M_R (MeV)	Γ_R (MeV)	J
a	2810.9	0	1/2
b	2814.3	0	3/2
c	2884.5	0	1/2
d	2941.6	0	1/2
e	2980.0	0	3/2

Romanets, LT, Garcia-Recio, Nieves, Salcedo, Timmermans '12

Mass too low!

Name	M_R (MeV)	Γ_R (MeV)	J	M_R^{exp}	Γ_R^{exp}
a	2963.95	0.0	1/2	-	_
c	2994.26	1.85	1/2	3000.4	4.5
b	3048.7	0.0	3/2	3050.2	0.8
d	3116.81	3.72	1/2	3119.1/ 3090.2	1.1/ 8.7
e	3155.37	0.17	3/2	-	-

Nieves, Pavao and LT '18

cutoff dependence: a maximum number of three states can be identified

Charmed hadrons in matter

Unitarized theory in matter:

selfconsistent coupled-channel procedure

Unitarized theory in matter: selfconsistent coupled-channel procedure

D-mesic nuclei

Solving Schroedinger or Klein-Gordon equation with

- potential from QMC model
- potential from SU(6) x HQSS model
- potential from π exchange model with HQS

SU(6) x HQSS model: weakly bound
D⁰-nucleus states with important
widths in contrast to

	odel	²⁰⁸ Pb
State	D ⁰ ($V^q_{\omega})$
1 <i>s</i>	-9	6.2
1 <i>p</i>	-9	3.0
2 <i>s</i>	-8	8.5

Tsushima et al. '99 Krein et al '17 (review)

- SU(6) x HQSS model: D⁺ does not bind

SU(6) x HQSS model:

Garcia-Recio, Nieves, Salcedo and LT '12

π exchange model with HQS

Tsushima, Lu, Thomas, Saito and Landau '99 Krein, Thomas and Tsushima '17 (review) ²⁰⁸Pb $D^{-}(V^{q}_{\omega}, \text{no Coulomb})$ $\bar{D}^0(V^q_\omega)$ $D^{-}(V^{q}_{\omega})$ State $\bar{D}^0(\tilde{V}^q_{\omega})$ $D^{-}(\tilde{V}^{q}_{\omega})$ 1*s* -10.6-35.2-11.2Unbound -25.4-23.11*p* -10.2-32.1-10.0Unbound -7.7-19.72s-30.0-6.6 Unbound

QMC model

Yasui and Sud	loh '13		
⁴⁰ Ca		²⁰⁸ Pb	
2.0 MeV			1.9 MeV
5.9 Me p-wave	<u>v</u>	9.2 MeV	7.3 MeV p-wave
14.9 MeV			
		18.7 MeV	

28.2 MeV s-wave

32.8 MeV g.s.

27.0 MeV

Experimental observation is, though, a difficult task (PANDA, J-PARC?)

Hiroaki Ohnishi's talk

Yamagata-Sekihara, Garcia-Recio, Nieves, Salcedo and LT '16

Large momentum transfer (about 1 GeV/c) makes any structure due to bound states not noticeable. Need of reactions with lower momentum transfer, such as

$$\bar{p} + p \to D^{*-} + D^+,$$

 $D^{*-} + A_Z \to \pi^0 + [A_Z - D^-]_b$

B decays: Belle, BaBar, LHCb, etc.

 $\zeta \psi, X$

Charm resonances in matter: X(3872) as DD⁺ molecule

D meson propagation in dense hot matter

Previous works Laine '11; He, Fries, Rapp '11; Ghosh, Das, Sarkar, -eAlam '11 We need scattering amplitudes |T|² (first approximation: |T|² in free space) Abreu, Cabrera, Llanes-Estrada, Torres-Rincon '11; LT and Torres-Rincon '13 (Vacuum) cross sections for open charm with mesons and baryons

Some results for CBM@FAIR energies

Beauty in Matter

Spectroscopy of excited beauty baryons

Garcia-Recio, Nieves, Romanets, Salcedo and LT '13

 $\begin{array}{ll} \Lambda_b(5912) \text{ and } \Lambda^*_b(5920) \text{ found by LHCb}^* \\ \text{are described as meson-baryon} \\ \text{molecular states belonging to a HQSS} \\ \text{doublet. In the same SU(3) x HQSS new} \\ \text{HQSS partners are predicted: } \Xi_b(6035) \\ \text{and } \Xi_b(6043) & * \text{Aaij et al (LHCb) '12} \end{array}$

Recently a Ξ_b^* state has been found by LHCb⁺ in Λ_b K⁻ and $\Xi_b \pi^-$ with $m_{\Xi b^*}=6226.9\pm2\pm0.3\pm0.2$ MeV $\Gamma_{\Xi b^*}=18.1\pm5.4\pm1.8$ MeV * Aaij et al (LHCb) '18

Our Ξ_b states have lower mass... work in progress! Pavao, Nieves and LT, in preparation

Beauty propagation in dense hot matter

Fokker-Planck equation

Results from FAIR to RHIC energies

Torres-Rincon, LT and Romanets '14; LT, Torres-Rincon and Das '16; Song et al '16

- Results insensitive to trajectory for high s/n_B: prediction for behaviour of hadronic medium at RHIC energies - Similar behaviour of diffusion coefficient for \overline{B} meson and Λ_b ➢ it is an exciting moment

moving from the light to the heavy sector

➤ a lot of theoretical effort is needed (how to construct a reliable effective theory that implements the correct symmetries)

but in close connection to experiments/lattice (how to provide feedback between theory and experiments/lattice: spectroscopy of excited states, spectra of meson-nucleus, transport coefficients,...)

