Workshop on Progress on Hadron structure functions in 2018 November 18-19, 2018, KEK

8th International Conference on Quarks and Nuclear Physics

ONP2018

November 13(Tue) – 17(Sat), 2018 Tsukuba, Ibaraki, JAPAN

Exclusive Drell-Yan for studying GPDs at J-PARC

Wen-Chen Chang

Institute of Physics, Academia Sinica

Based on the paper of Takahiro Sawada, Wen-Chen Chang, Shunzo Kumano, Jen-Chieh Peng, Shinya Sawada, Kazuhiro Tanaka, Phys. Rev. D93 (2016) 114034 [arXiv:1605.00364]

Outline

- Measuring GPDs in a timelike approach Exclusive Drell-Yan Process
- Drell-Yan Process: inclusive, semi-exclusive and exclusive ones
- Measurement at J-PARC:
 - High-momentum beamline at J-PARC
 - Feasibility study
 - Impacts and prospects
- Summary

Generalized Transverse-Momentum-Dependent Parton Distribution Functions (GTMDs)

JHEP 08 (2008) 038; 08 (2009) 056

Electromagnetic Form Factors

Parton Density Functions of Protons

Generalized Parton Distributions

Muller et al., PRD 86 031502(R) (2012)

CIP (PRL 43, 1219 (1979))

225 GeV pion-

Higher Twist Effect at large x_{π} E615 (PRD 39, 92 (1989))

 $\cos\theta$

Higher Twist Effect at large x_{π} Berger and Brodsky (PRL 42, 940, (1979))

 $d\sigma \propto (1 + \alpha \cos^2 \theta)$

9

Pion Distribution Amplitude Brandenburg et al. (PRL 73, 939 (1994))

Pion distribution amplitude: distribution of LC momentum fractions in the lowest-particle number valence Fock state.

Drell-Yan in the Bj limit: $Q^2 \rightarrow \infty$ at fixed x

$$Q^2 = x_1 x_2 s \to \infty$$

$$x_1, x_2; x_F = x_1 - x_2$$
 fixed

Transversely polarized photon, since quarks are ~ on-shell

Leading twist: One active parton in beam and target hadrons

Spectators are incoherent with the hard subprocess

Factorization: $\sigma = f_{\bar{q}/\pi}(x_1) f_{q/N}(x_2) \hat{\sigma}(\bar{q}q \to \gamma^*)$

Higher twist corrections are of order $\frac{1}{Q^2} \frac{1}{1-x}$

Paul Hoyer Krakow January 6, 2009

Drell-Yan in the BB limit: $Q^2 \rightarrow \infty$ at fixed $Q^2(1-x_F)$

Stopped quark is comoving with the target. Its interactions in the target affect the hard subprocess.

Paul Hoyer Krakow January 6, 2009

Hence the stopped quark should be connected to the target:

For each final state X the target matrix element is given by a GPD with skewness

$$l_2^+ - l_1^+ = q^+ = x_B p^+$$

 $k_1 = (0^+, zk^-, k_\perp)$ $k_2 = (0^+, (1-z)k^-, -k_\perp)$

Since $q_1^2 \approx -zk^- l_1^+ \rightarrow \infty$

the pion wave function contributes through its *distribution amplitude* ϕ

Also q_2^2 , q_1^- , $q_2^- \rightarrow \infty$, hence the space-time separation of the target interaction points y_1 , y_3 is

 $\begin{aligned} |\boldsymbol{y}_{1\perp} - \boldsymbol{y}_{3\perp}| &= \mathcal{O}\left(1/Q\right) \to \boldsymbol{0} \\ |\boldsymbol{y}_{1}^{+} - \boldsymbol{y}_{3}^{+}| &= \mathcal{O}\left(1/Q^{2}\right) \to \boldsymbol{0} \\ |\boldsymbol{y}_{1}^{-} - \boldsymbol{y}_{3}^{-}| &= \mathcal{O}\left(1/\ell_{1}^{+}\right) \text{ finite} \end{aligned}$

Using perturbative propagators for the gluon q_1 and *d*-quark q_2 and adding three more diagrams we get

Paul Hoyer Krakow January 6, 2009

Large x_F limit

- Bj limit (Q² → ∞, at fixed x₁), cross sections = pion PDF * nucleon PDF
 * hard kernel
- **BB** limit $(Q^2 \rightarrow \infty, \text{ at fixed } Q^2(1 x_F))$, cross sections = |pion DA|² * nucleon multi-parton distribution * hard kernel
- Exclusive DY (Q² → ∞, at fixed t and τ), cross sections = |pion DA * nucleon GPD * hard kernel |²

$\pi N \rightarrow l^+ l^- N$ (Leading-twist)

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

$$\begin{split} \frac{d\sigma_L}{dt dQ'^2}\Big|_{\tau} &= \frac{4\pi\alpha_{\rm em}^2}{27} \frac{\tau^2}{Q'^8} f_{\pi}^2 \left[(1-\xi^2) |\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)|^2 \right. \\ &\quad - 2\xi^2 \mathrm{Re} \left(\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)^* \tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t) \right) - \xi^2 \frac{t}{4m_N^2} |\tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t)|^2 \right], \end{split}$$

Differential cross sections with an updated time-like pion FF

S.V. Goloskokov, P. Kroll, PLB 748 (2015) 323 160 $rac{d\sigma_L}{dtdQ'^2}$ 140 $d\sigma_L/dQ'^2$ [pb/GeV⁴] 80 $[pb/GeV^2]$ 12010060 80 60 4040 20200 -20 0 0.10.20.50.00.30.42 3 $\mathbf{5}$ 6 4 $Q^{\prime 2} [\text{GeV}^2]$ $-t'[\text{GeV}^2]$ $Q'^2 = 4\,{\rm GeV}^2$ and $s = 20\,{\rm GeV}^2$ solid lines with error bands: full result pion pole, $|\langle \widetilde{H}^{(3)} \rangle|^2$, interference, short dashed: leading-twist contribution time-like pion FF: $Q'^2 |F_{\pi}(Q'^2)| = 0.88 \pm 0.04 \,\text{GeV}^2$ (CLEO, BaBar, $J/\Psi \to \pi^+\pi^-$) phase $(\exp[i\delta(Q'^2)])$ from disp. rel. Belicka et al(11) for $Q'^2 < 8.9 \,\mathrm{GeV}^2$ $\delta = 1.014\pi + 0.195(Q'^2/\text{GeV}^2 - 2) - 0.029(Q'^2/\text{GeV}^2 - 2)^2$ 16 for $Q'^2 \ge 8.9 \,\mathrm{GeV}^2$: $\delta = \pi$, the LO pQCD result P. Kroll, MENU 2016

Beyond the Leading Twist

 $d\sigma$

S.V. Goloskokov, P. Kroll, PLB 748 (2015) 323

Leading-Twist Diagram

Pion-pole Dominance for \tilde{E}

HADES: $\pi^- p \rightarrow ne^+e^-$ with $P_{\pi^-} < 1 \text{ GeV}$

November, 2018

Joachim Stroth | QNP2018 | Tsukuba, Japan

Electromagnetic TFF for baryons (N*)

Hadronic final states used in PWA (A. Sarantsev; BONN/GATCHINA) $\pi^- + p \rightarrow \pi^- + \pi^+ + n$

 $p_{\pi} = [656, 690, 748, 800] \; {
m MeV}$

$\pi^- + p \rightarrow e^- + e^+ + n$

- Prediction for dilepton invariant mass assuming strict VMD.
- Evidence for intermediate ρ propagation in both s- (baryon resonance) and t-channel.
- o em TFF shows VDM-like rise
- Also seen in space-like at CLAS

Joachim Stroth | QNP2018

651

I.G. Aznauryan & V. D. Burkert, NSTAR-2017

Optimization of Exclusive Drell-Yan Measurement

- Factorization requirements: $Q^2 \gg 1 \ GeV^2$
- Large cross sections:
 - Cross sections decrease rapidly with an increase of Q^2 . $Q^2 < 9 GeV^2$

- \sqrt{s} should be small enough to keep $\sqrt{\tau} = \frac{Q}{\sqrt{s}} = \sqrt{x_{\pi}x_{N}}$ large enough. Take $Q = 2 \ GeV$, $\sqrt{\tau} = \sqrt{0.5 * 0.3} = 0.39$, $\sqrt{s} = 5 \ GeV$, pion beam momentum should be less than 15 GeV.

Optimization of Exclusive Drell-Yan Measurement

- Ensuring exclusivity: missing-mass technique
 - Good resolution for missing mass
 - Open aperture without the hadron absorber before measuring the momentum of lepton tracks
 - Reasonably low track multiplicity

The high-momentum beam line at J-PARC with 10-20 GeV π^- beam ($\sqrt{s} = 4 - 6$ GeV) is appropriate for measuring the exclusive Drell-Yan process.

J-PARC High-momentum Beam Line (Hi-P BL)

- High-intensity secondary Pion beam
- High-resolution beam: Δp/p ~ 0.1%

J-PARC High-momentum Beam Line (Hi-P BL)

- High-intensity secondary Pion beam
- High-resolution beam: Δp/p ~ 0.1%

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

GPD Models

BMP2001

E. R. Berger, M. Diehl and B. Pire, Eur. Phys. J. C 23 (2002) 675 E. R. Berger, M. Diehl and B. Pire, Phys. Lett. B 523 (2001) 265

$$\begin{split} \tilde{H}^{d,u}(x,\xi,t) &= \tilde{H}^{d,u}(x,\xi,0) \left[g_A(t) / g_A(0) \right] \\ \text{Here, } \tilde{H}^q(x,\xi,0) \text{ is constructed from an ansatz based} \\ \text{on double distributions as an integral } \tilde{H}^q(x,0,0) &= \Delta q(x) \\ \text{combined with a certain profile function generating the} \\ \text{skewness } \xi \text{ dependence} \\ \phi_\pi(z) \to (3/4)(1-z^2) \text{ asymptotic form} \end{split}$$

GK2013

P. Kroll, H. Moutarde and F. Sabatie, Eur. Phys. J. C 73 (2013) 1, 2278 The parameters are determined from the HERMES data on the cross sections and target asymmetries for pi+ electroproduction $(2/4)(1-x^2)[1-x^2](x)]$

$$\phi_{\pi}(z) = (3/4)(1-z^2)[1+a_2C_2^{(3/2)}(z)]$$

with $a_2 \ (\mu = 2 \text{ GeV}) = 0.22$

Differential cross sections

 $\left. \frac{d\sigma_L}{dt dQ'^2} \right|_{\tau} = \frac{4\pi \alpha_{\rm em}^2}{27} \frac{\tau^2}{Q'^8} f_{\pi}^2 \left[(1-\xi^2) |\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)|^2 \right]$ $-2\xi^{2}\operatorname{Re}\left(\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)^{*}\tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t)\right)-\xi^{2}\frac{t}{4m_{M}^{2}}|\tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t)|^{2}\Big],$ $Q'^2 = q'^2 = 5 \ GeV^2$ at $\tau = \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s - M_{N}^2} = 0.2$ at $t = (p - p')^2 = -0.2 \text{ GeV}^2$

Production is dominant at forward

angles

Cross sections increase toward small s (\rightarrow low beam energy) 27

Sensitivity to Pion DAs

$\Phi_{\pi}(x,\mu) = 6x(1-x) \sum_{n=0,2,4,\dots}^{\infty} a_n(\mu) C_n^{3/2}(2x-1).$						
$\phi_{\pi}(z,\mu)$	Asymptotic [41]	CZ [42]	GK [51]	DSE [52]		
a_2	0	2/3	0.22	0.20		
a_4	0	0	0	0.093		
a_6	0	0	0	0.055		
μ^2 (GeV ²)	1	0.25	4	4		

Total LO cross sections

BMP2001

GK2013

J-PARC (Pπ=10-20 GeV) $\sigma = 5 \sim 15$ pb CERN COMPASS (Pπ=190 GeV) $\sigma = 0.65$ pb

J-PARC E50 Experiment (Charmed Baryon Spectroscopy)

Stage-1 approved by J-PARC PAC-18, August 12, 2014.

H. Noumi, KEK workshop 2015

Extension of J-PARC E50 Experiment for Drell-Yan measurement

Simulation

Assumptions:

- Target: 57cm LH₂ (n_{TGT} = 4 g/cm²) Beam momentum resolution($\Delta p/p$) = 0.1 % 1.83/1.58/1.00 *10⁷ π^- /spill for 10/15/20 GeV beam Data Taking: 50 days (*Proposal of E50: 100 days) E50 spectrometers + μ ID system

Expected cross sections for the exclusive/inclusive Drell-Yan processes

	Exclusive Drell-Yan		Inclusive Drell-Yan	
	$\left(\begin{array}{c} M_{\mu^+\mu^-} > 1.5 \ {\rm GeV}, \\ t - t_0 < 0.5 \ {\rm GeV}^2 \end{array}\right)$		$(M_{\mu^+\mu^-} > 1.5 \text{ GeV})$	
	"BMP2001"	"GK2013"		
P_{π} = 10 GeV	6.29 pb	17.53 pb	2.11 nb	
P_{π} = 15 GeV	4.67 pb	10.65 pb	2.71 nb	
P_{π} = 20 GeV	3.70 pb	7.25 pb	3.08 nb	

 Total hadronic interaction cross sections of $\pi^- p$ is about 20-30 mb while the production of J/ψ is about 1-3 nb

Invariant mass $M_{\mu^+\mu^-}$ spectra

- Data Taking: 50 days
- *M*_{µ+µ-} > 1.5 GeV
- |*t t*₀|< 0.5 GeV²
- "GK2013" GPDs

Missing-mass M_X spectra

- Data Taking: 50 days
- 1.5 < M_{µ+µ} < 2.9 GeV
- |*t t*₀| < 0.5 GeV²
- "GK2013" GPDs

The exclusive Drell-Yan events could be identified by the signature peak at the nucleon mass in the missing-mass spectrum for all three pion beam momenta.

Expected Statistical Sensitivity

- Data Taking: 50 days
- $1.5 < M_{\mu^+\mu^-} < 2.9 \text{ GeV}$
- $|t t_0| < 0.5 \text{ GeV}^2$

The statistics sensitivity is good enough for discriminating the predictions from two current GPD models.

Kinematic regions of GPDs explored by space-like and time-like processes

JLAB, HERMES, COMPASS → Space-like approach
 J-PARC → Time-like approach

Impacts and Prospects

- Impacts:
 - Factorization of exclusive Drell-Yan process.
 - Universality of GPDs in space-like and time-like processes.
 - Pion DAs and FFs.
 - Separation of contributions from GPDs and transversity-GPDs through the dilepton angular distributions.
- **Prospects:** with an increase of beam time (50→100 days) and beam luminosity and optimization of setup
 - GPD at large-Q² region
 - QCD-evolution properties of GPDs

Expected Timeline

- Beamline:
 - High-P beamline: by April, 2020
 - Target for secondary beams: by April, 2023
- Experiment:
 - Lol: by December, 2018
 - Proposal within E50 experiment: by 2019

Summary

- Measurements of the exclusive π -induced DY process will bring important understandings on
 - Factorization of exclusive Drell-Yan process
 - Universality of GPDs in the space-like and time-like processes
 - Pion DAs, FFs,...
- Preliminary study shows that such measurement is feasible with E-50 spectrometers in the coming high-momentum beamline at J-PARC.
- Submission of full proposal to J-PARC is expected by 2019. Interested collaborators are more than welcome.