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Why focus on light ions at an EIC?
� Measurements with light ions address essential parts of the EICphysics program

I neutron structure
I nucleon interactions
I coherent phenomena

� Light ions have unique features
I polarized beams
I breakup measurements & tagging
I first principle theoretical calculations of initial state

� Intersection of two communities
I high-energy scattering
I low-energy nuclear structure

Use of light ions for high-energy scattering and QCD studies remainslargely unexplored
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EIC design characteristics (for light ions)
� CM energy √seA = √Z /A 20− 100GeVDIS at x ∼ 10

−3 − 10
−1, Q2 ≤ 100GeV2

� High luminosity enables probing/measuring
I exceptional configurations in target
I multi-variable final states
I polarization observables

� Polarized light ions
I 3He, other @ eRHIC
I d, 3He, other @ JLEIC(figure 8)
I spin structure, polarizedEMC, tensor pol, ...

� Forward detection of target beamremnants
I diffractive and exclusive processes
I coherent nuclear scattering
I nuclear breakup and tagging
I forward detectors integrated indesigns
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Light ions at EIC: physics objectives
� Neutron structure

I flavor decomposition of quark PDFs/GPDs/TMDs
I flavor structure of the nucleon sea
I singlet vs non-singlet QCD evolution, leading/higher-twisteffects

� Nucleon interactions in QCD
I medium modification of quark/gluon structure
I QCD origin of short-range nuclear force
I nuclear gluons
I coherence and saturation

� Imaging nuclear bound states
I imaging of quark-gluon degrees of freedom in nucleithrough GPDs
I clustering in nuclei

Need to control nuclear configurations that play a role inthese processes
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Theory: high-energy scattering with nuclei
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� Interplay of two scales: high-energy scattering andlow-energy nuclear structure. Virtual photon probesnucleus at fixed lightcone time x+ = x0 + x3

� Scales can be separated using methods oflight-front quantization and QCD factorization
� Tools for high-energy scattering known from ep

� Nuclear input: light-front momentum densities,spectral functions, overlaps with specific final statesin breakup/tagging reactions
I framework known for deuteron
I still low-energy nuclear physics, just formulateddifferently
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Neutron structure measurements
Needed for flavor separation, singlet vs non-singlet evolution etc.

� EIC will measure inclusive DIS on light nuclei [d ,3He, 3H(?)]
I Simple, no FSI effects
I Compare n from 3He ↔ p from 3H
I Comparison n from 3He, d

� Uncertainties limited by nuclear structure effects (binding, Fermimotion, non-nucleonic dof)
� 3He is in particular affected because of intrinsic ∆s
If we want to aim for precision, use tools that avoid these complications
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Neutron structure with tagging
� Proton tagging offers a way of controlling the nuclear configuration
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� Advantages for the deuteron
I active nucleon identified
I recoil momentum selects nuclear configuration(medium modifications)
I limited possibilities for nuclear FSI, calculable

� Allows to extract free neutron structure withpole extrapolation
� Suited for colliders: no target material (pp → 0), forward detection,polarization.fixed target CLAS BONuS limited to recoil momenta ∼ 70 MeV
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Pole extrapolation for on-shell nucleon structure
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� Allows to extract free neutron structure
I Recoil momentum pR controls off-shellness ofneutron t ′ ≡ t −m2

N
I Free neutron at pole t −m2

N → 0: “on-shellextrapolation”
I Small deuteron binding energy results in smallextrapolation length
I Eliminates nuclear binding and FSI effects

[Sargsian,Strikman PLB '05]

� D-wave suppressed at on-shell point → neutron ∼ 100% polarized
� Precise measurements of neutron (spin) structure at an EIC
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Theoretical Formalism
� General expression of SIDIS for a polarized spin 1 target

I Tagged spectator DIS is SIDIS in the target fragmentation region
~e + ~T → e ′ + X + h

� Dynamical model to express structure functions of the reaction
I First step: impulse approximation (IA) model
I FSI corrections (unpolarized)

� Light-front structure of the deuteron
I Natural for high-energy reactions as off-shellness of nucleons in LFquantization remains finite
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Polarized spin 1 particle
� Spin state described by a 3*3 density matrix in a basis of spin 1 statespolarized along the collinear virtual photon-target axis

W µν
D = Tr [ρλλ′W µν (λ′λ)]

� Characterized by 3 vector and 5 tensor parameters
Sµ = 〈Ŵ µ〉 , T µν = 1
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� Can be formulated in covariant manner → ρµν = ∑λλ′ ε∗µ(λ′)εν (λ)
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Spin 1 SIDIS: General structure of cross section
� To obtain structure functions, enumerate all possible tensor structuresthat obey hermiticity and transversality condition (qW = Wq = 0)
� Cross section has 41 structure functions,

dσ
dxdQ2dφl ′

= y2α2
Q4(1− ε) (FU + FS + FT ) dΓPh

,

I U + S part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]
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Tagged DIS with deuteron: model for the IA
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� Hadronic tensor can be written as a product ofnucleon hadronic tensor with deuteronlight-front densities
W µν

D (λ′, λ) = 4(2π)3 αR
2− αR

∑
i=U,z ,x ,y

W µν
N,iρ

i
D (λ′, λ) ,

All SF can be written as
F k
ij = {kin. factors} × {F1,2(x̃ ,Q2)or g1,2(x̃ ,Q2)} × {bilinear formsin deuteron radial wave function U(k),W (k)}

� In the IA the following structure functions are zero → sensitive to FSI
I beam spin asymmetry [F sinφh

LU ]
I target vector polarized single-spin asymmetry [8 SFs]
I target tensor polarized double-spin asymmetry [7 SFs]
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Deuteron light-front wave function
n

p
= 1J

S + D-wave

� Up to momenta of a few 100 MeV dominated by NNcomponent
� Can be evaluated in LFQM [Coester,Keister,Polyzou et al.]or covariant Feynman diagrammatic way

[Frankfurt,Sargsian,Strikman]
� One obtains a Schrödinger (non-rel) like eq. for the wave functioncomponents, rotational invariance recovered
� Light-front WF obeys baryon and momentum sum rule

ΨD
λ (k f , λ1, λ2) = √Ekf

∑
λ′
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D
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2

λ1λ′1
[Rfc (kµ1f /mN )]D 1

2

λ2λ′2
[Rfc (kµ2f /mN )]ΦD

λ (k f , λ′1, λ′2)
� Differences with non-rel wave function:

I appearance of the Melosh rotations to account for light-front quantizednucleon states
I k f is the relative 3-momentum of the nucleons in the light-front boostedrest frame of the free 2-nucleon state (so not a “true” kinematicalvariable)
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Tagging: unpolarized neutron structure
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Spectator tagging e + D → e' + p + X
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6
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JLab LDRD arXiv:1407.3236, arXiv:1409.5768,
https://www.jlab.org/theory/tag/

� F2n extracted withpercent-level accuracy at
x < 0.1

� Uncertainty mainlysystematic due to intrinsicmomentum spread in beam(JLab LDRD project: detailedestimates)
� In combination with protondata non-singlet F2p − F2n ,sea quark flavor asymmetry

d̄ − ū
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Polarized structure function: longitudinal asymmetry
� We consider polarization wrt photon momentum
� On-shell extrapolation of double spin asymm.

A|| = σ (++)− σ (−+)− σ (+−) + σ (−−)
σ (++) + σ (−+) + σ (+−) + σ (−−) [φh avg] = FLSL

FT + εFL + 1√
6
(FTLLT + εFTLLL)

� SF are tagged, depend on recoil momentum:
FLSL = 2[g1d (x ,Q2, pp)− γ2g2d (x ,Q2, pp)] [γ = 2Mx /Q ]

� Denominator is not the unpolarized cross section, you have acontribution from tensor polarization
� Impulse approximation yields

A|| = ρ||
D1g1n(x̃ ,Q2) + D2g2n(x̃ ,Q2)

2(1 + εRn)F1n(x̃ ,Q2) ≈
D1ρ||

2(1 + εRn) g1n(x̃ ,Q2)
F1n(x̃ ,Q2)

I ρ||: ratio of polarized deuteron densities
I D2 ∝ γ2 power suppressed
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Polarized structure function: longitudinal asymmetry
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� ρ|| ≡ 1 for pT = 0

� rotational invariance of thedeuteron system recovered in thenon-rel limit
� Clear contribution from D-waveat finite recoil momenta
� Relativistic nuclear effectsthrough Melosh rotations, growwith recoil momenta
� Both effects drop out near theon-shell extrapolation point
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Polarized structure function: transverse asymmetry
� Similar expressions hold for

A⊥[φh avg] = γ̃N
d1ρ⊥1(g1n + g2n) + d2ρ⊥2g2n

2(1 + εRn)F1n + power suppr. terms

� ρ⊥2 ∝ pT

� rotational invariance again recovered in the NR limit
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Tagging: simulations of A||
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� D-wave suppr. at on-shell point
→ neutron ∼ 100% polarized

� Systematic uncertainties cancelin ratio (momentum smearing,resolution effects)
� Statistics requirements

I Physical asymmetries ∼ 0.05− 0.1
I Effective polarization PePD ∼ 0.5
I Luminosity required ∼ 10

34cm−2s−1
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Tagging: simulations of A||
On-shell extrapolation of double spin asymm. A|| = D g1n

F1n
+ · · ·
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� As depolarization factor
D = y (2−y )

2−2y+y2
and

y ≈ Q2

xseN
, wide range of

seN required!
� Precise measurement of neutron spin structure

I separate leading- /higher-twist
I non-singlet/singlet QCD evolution
I pdf flavor separation ∆u,∆d . ∆G through singlet evolution
I non-singlet g1p − g1n and Bjorken sum rule
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Extensions
� Final-state interactions modify cross section away fromthe pole

I studied for unpolarized case at EIC kinematics, poleextrapolation still feasible
[Strikman, Weiss PRC '18]

I dominated by slow hadrons in target fragmentationregion of the struck nucleon
I extend to ~e + ~d
I constrain FSI models
I non-zero azimuthal and spin observables throughFSI

e’

p

e

p

fast

slow

q

� Tensor polarized observables
� Tagging with complex nuclei A > 2

I isospin dependence, universality of bound nucleon structure
I A− 1 ground state recoil

� Resolved final states: SIDIS on neutron, hard exclusive channels
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Conclusions
� Light ions address important parts of the EIC physics program
� Tagging and nuclear breakup measurements overcome limitations dueto nuclear uncertainties in inclusive DIS → precision machine

� Unique observables with polarized deuteron: free neutron spinstructure, tensor polarization
� Extraction of nucleon spin structure in a wide kinematic range
� Lots of extensions to be explored!
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