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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that

∑k
i=1 x↓

i ≤
∑k

i=1 y↓
i ,

1 ≤ k ≤ d − 1 and the equality holds for k = d,
x↓

i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
a state. This criterion is stronger than entropic cri-
terion (30) and it again supports the view that “sep-
arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).

VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:

|ΨAB⟩ =
dA−1
∑

i=0

dB−1
∑

j=0

AΨ
ij |ei

A⟩ ⊗ |ej
B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.

For a system consisting two subsystems (bipartite system)  
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26 T denotes transposition.
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that

∑k
i=1 x↓

i ≤
∑k

i=1 y↓
i ,

1 ≤ k ≤ d − 1 and the equality holds for k = d,
x↓

i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
a state. This criterion is stronger than entropic cri-
terion (30) and it again supports the view that “sep-
arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).

VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:

|ΨAB⟩ =
dA−1
∑

i=0

dB−1
∑

j=0

AΨ
ij |ei

A⟩ ⊗ |ej
B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.
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density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
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correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
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tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,
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X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.

Entangled 



Examples: two qubits system

9

that the total state is always a product state of the n
separate systems. In contrast according to the quantum
formalism the total Hilbert space H is a tensor product
of the subsystem spaces H = ⊗n

l=1Hl. Then the super-
position principle allows us to write the total state of the
system in the form:

|ψ⟩ =
∑

in

cin |in⟩, (1)

where in = i1, i2...in is the multiindex and |in⟩ =
|i1⟩⊗|i2⟩...⊗|in⟩, which cannot be, in general, described
as a product of states of individual subsystems15 |ψ⟩ ≠
|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · ·⊗ |ψn⟩.

This means, that it is in general not possible, to assign
a single state vector to any of n subsystems. It express
formally a phenomenon of entanglement, which in con-
trast to classical superposition, allows to construct ex-
ponentially large superposition with only linear amount
of physical resources. It is just what allows to perform
nonclassical tasks. The states on left hand side (LHS) of
(1) appear usually as a result of direct physical interac-
tions. However, the entanglement can be also generated
indirectly by application of the projection postulate (en-
tanglement swapping).

In practice we encounter mixed states rather than pure.
Entanglement of mixed states is not longer equivalent to
being non-product, as in the case of pure states. Instead,
one calls a mixed state of n systems entangled if it cannot
be written as a convex combination of product states16

(Werner, 1989a):

ρ ≠
∑

i

piρ
i
1 ⊗ . . . ⊗ ρi

n. (2)

The states which are not entangled in the light of the
above definition are called separable. In practice it is
hard to decide if a given states is separable or entan-
gled basing on the definition itself. Therefore one of the
fundamental problems concerning entanglement is the so
called separability problem (see Secs. VI-X).

It should be noted in the above context that the ac-
tive definition of entanglement states was proposed re-
cently. Namely entangled states are the ones that can-
not be simulated by classical correlations (Masanes et al.,
2007). This interpretation defines entanglement in terms
of the behavior of the states rather than in terms of
preparation of the states.

Example. for bipartite systems the Hilbert space H =
H1 ⊗ H2 with dimH1 = dimH2 = 2 is spanned by the

15 Sometimes instead of notation |ψ⟩⊗ |φ⟩ we use simply |ψ⟩|φ⟩ and
for |i⟩ ⊗ |j⟩ even shorter |ij⟩.

16 Note, that classical probability distributions can always be writ-
ten as mixtures of product distributions.

four Bell-state entangled basis

∣

∣ψ±〉

=
1√
2
(|0⟩ |1⟩±|1⟩ |0⟩)

∣

∣φ±
〉

=
1√
2
(|0⟩ |0⟩±|1⟩ |1⟩).

(3)
These states (called sometimes EPR states) have re-

markable properties namely if one measures only at one
of the subsystems one finds it with equal probability in
state |0⟩ or state |1⟩. However, the result of the mea-
surements for both subsystems are perfectly correlated.
This is just feature which was recognized by Schrödinger:
we know nothing at all about the subsystems, although
we have maximal knowledge of the whole system because
the state is pure (see Sec. V). There is another holistic
feature, that unitary operation of only one of the two
subsystems suffices to transform from any Bell states to
any of the other three states. Moreover, Braunstein et
al. showed that the Bell states are eigenstates of the Bell
operator (16) and they maximally violate Bell-CHSH in-
equality (17) (see Sec. IV) (Braunstein et al., 1992).

The Bell states are special cases of bipartite maximally
entangled states on Hilbert space Cd ⊗ Cd given by

|ψ⟩ = UA ⊗ UB|Φ+
d ⟩AB (4)

where

|Φ+
d ⟩ =

1√
d

d
∑

i=1

|i⟩|i⟩ (5)

is the ”canonical” maximally entangled state. In this pa-
per, a maximally entangled state will be also called EPR
(Einstein-Podolsky-Rosen) state or singlet state, since it
is equivalent to the true singlet state up to local unitary
transformations (for d = 2 we call it also e-bit). We will
also often drop the index d.

The question whether a mixture of Bell states is still
entangled, is quite nontrivial. Actually it is the case if
and only if one of eigenvalues is greater than 1

2 (see Sec.
VI).

So far the most widely used source of entangle-
ment are entangled-photon states produced by nonlin-
ear process of parametric down-conversion of type I
or of type II corresponding to weather entangled pho-
tons of the down-conversion pair are generated with
the same polarization or orthogonal polarization respec-
tively. In particular using parametric down-conversion
one can produce Bell-state entangled basis (3). There
are also many other sources of entangled quantum sys-
tems, for instance: entangled photon pairs from calcium
atoms (Kocher and Commins, 1967), entangled ions pre-
pared in electromagnetic Paul traps (Meekhof et al.,
1996), entangled atoms in quantum electrodynamic cavi-
ties (Raimond et al., 2001), long-living entanglement be-
tween macroscopic atomic ensembles (Hald et al., 1999;
Julsgaard et al., 2001), entangled microwave photons
from quantum dots (Emary et al., 2005), entangle-
ment between nuclear spins within a single molecule
(Chen et al., 2006a) entanglement between light and an
atomic ensembles (Muschik et al., 2006).
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we know nothing at all about the subsystems, although
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ai → pw(A = ai|ψ,φ)
∑

i

pw(A = ai|ψ,φ) = 1

dA = 2 dB = 2

Ψi Ψf Φ0(Q) = N e−
Q2
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Bell states

or

spin singlet state

Ψi Ψf Ψi(Q) = Ψf (Q) = Aw = 1

ai → pw(A = ai|ψ,φ)
∑

i

pw(A = ai|ψ,φ) = 1

dA = 2 dB = 2

|Ψ⟩ = 1√
2
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⟨ψ|EA
n |ψ⟩∑

i⟨ψ|EA
i |ψ⟩

∑

n

p(A = an|ψ) = 1

∑

n

p(A = an|ψ,φ) = 1

Schrödinger
1935

... the best possible knowledge of a whole does not 
necessarily include the best possible knowledge of all 
its parts, even though they may be entirely separate ...
I would not call that one but rather the characteristic 
trait of quantum mechanics
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with a > b > 0 can be converted (up to irrelevant phase)

into |φ+⟩ by filter A⊗I, with A =

[

b
a 0
0 1

]

with probabil-

ity p = 2|b|2; so it is possible to consider representative
state for each class.

A surprising result is due to Ishizaka (Ishizaka, 2004)
who considered SLOCC assisted by bound entangled
PPT states. He then showed that every state can be con-
verted into any other. This works for both bipartite and
multipartite pure states. For multipartite states SLOCC
classification was done in the case of three (Dür et al.,
2000b) and four qubits (Verstraete et al., 2002), and also
two qubits and a qudit (Miyake and Verstraete, 2004).
For three qubits there are five classes plus fully product
state, three of them being Bell states between two qubits
(i.e. states of type EPRAB ⊗ |0⟩C). Two others are GHZ
state

|GHZ⟩ =
1√
2
(|000⟩ + |111⟩) (124)

and so called W state

|W ⟩ =
1√
3
(|100⟩ + |010⟩+ |001⟩). (125)

They are inequivalent, in a sense, that none of them can
be converted into the other one with nonzero probability
(unlike in bipartite state case, where one can go from any
class to any lower class i.e. having lower Schmidt rank).

In 2⊗2⊗d case (Miyake, 2004; Miyake and Verstraete,
2004), there is still discrete family of inequivalent
classes, where there is maximally entangled state — two
EPR state φ+

AB1
⊗ φ+

B2C (where the system B is four-
dimensional). Any state can be produced from it simply
via teleportation (Bob prepares the needed state, and
teleports its parts to Alice and to Charlie.

In four qubit case the situation is not so simple: the
inequivalent classes constitute a continuous family, which
one can divide into nine qualitatively different subfami-
lies.

The SLOCC classification is quite elegant generaliza-
tion of local unitary classification. In the latter case the
basic role is played by invariants of group SUd1

⊗ . . . ⊗
SUdN for d1 ⊗ . . . ⊗ dN system, while in SLOCC, the
relevant group is SLd1,C ⊗ . . . ⊗ SLdN ,C (one restricts
to filters of determinant 1, because the normalization of
states does not play a role in SLOCC approach).

Finally, the SLOCC classification of pure states can be
used to obtain some classification of mixed states (see
(Acin et al., 2001; Miyake and Verstraete, 2004)).

B. Asymptotic entanglement manipulations and
irreversibility

The classifications based on exact transformations
suffer for some lack of continuity: for example in
SLOCC approach ψ with squares of Schmidt coeffi-
cients (0.5, 0.49, 0.01) is in the same class as the state

(1/3, 1/3, 1/3), but in different class than (0.5, 0.5, 0),
while we clearly see that the first and the last have
much more in common than the middle one. In order to
neglect small differences, one can employ some asymp-
totic limit. This is in spirit of Shannon’s communica-
tion theory, where one allows for some inaccuracies of in-
formation transmission, provided they vanish in asymp-
totic limit of many uses of channel. Interestingly, the
first results on quantitative approach to entanglement
(Bennett et al., 1996b,c,d) were based on LOCC trans-
formations in asymptotic limit.

In asymptotic manipulations, the main question is
what is the rate of transition between two states ρ and
σ. One defines the rate as follows. We assume that Alice
and Bob have initially n copies in state ρ. They apply
LOCC operations, and obtain m pairs53 in some joint
state σm. If for large n the latter state approaches state
σ⊗m, i.e.

∥σm − σ⊗m∥1 → 0 (126)

and the ratio m/n does not vanish, then we say that ρ
can be transformed into σ with rate R = limm/n. The
largest rate of transition we denote by R(ρ → σ). In
particular, distillation of entanglement described in Sec.
XII is the rate of transition to EPR state

ED(ρ) = R(ρ→ ψ+). (127)

The cost of creating state out of EPR states is given by

EC(ρ) = 1/R(ψ+ → ρ) (128)

and it is the other basic important measure (see Sec.
XV.A for description of those measures in more detail).

1. Unit of bipartite entanglement

The fundamental result in asymptotic regime is that
any bipartite pure state can be transformed into two-
qubit singlet with rate given by entropy of entanglement
SA = SB , i.e. entropy of subsystem (either A or B, since
for pure states they are equal). And vice versa, to create
any state from two-qubit singlet, one needs SA singlets
pair pair two-qubit state. Thus any pure bipartite state
can be reversibly transformed into any other state. As a
result, in asymptotic limit, entanglement of these states
can be described by a single parameter — von Neumann
entropy of subsystem. Many transitions that are not al-
lowed in exact regime, become possible in asymptotic
limit. Thus the irreversibility implied by Nielsen result
is lifted in this regime, and EPR state becomes universal
unit of entanglement.

53 Here m depends on n, which we do note write explicitly for
brevity.

GHZ (Greenberger, Horne and Zeilinger) state
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Examples: two bosonic system

NOON state
mode number (n photons)

ρAB ρTB
AB

ρB =

dA = 2 dB = 2 S(ρA) ̸= 0

|Ψ⟩ = 1√
2
(|↑ ⟩|↓ ⟩ − |↓ ⟩|↑ ⟩)

|ΨAB⟩ = α|↑ ⟩|↓ ⟩+ β|↓ ⟩|↑ ⟩

|NOON⟩ = 1√
2
(|n⟩|0⟩+ |0⟩|n⟩)

⟨Ψf |P |Ψf ⟩ − ⟨Ψi|P |Ψi⟩ ⟨Ψf |Q|Ψf ⟩ − ⟨Ψi|Q|Ψi⟩

|α|2 = x, |β|2 = 1− x ln 2
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that

∑k
i=1 x↓

i ≤
∑k

i=1 y↓
i ,

1 ≤ k ≤ d − 1 and the equality holds for k = d,
x↓

i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
a state. This criterion is stronger than entropic cri-
terion (30) and it again supports the view that “sep-
arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).

VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:

|ΨAB⟩ =
dA−1
∑

i=0

dB−1
∑

j=0

AΨ
ij |ei

A⟩ ⊗ |ej
B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.
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1989a)) if and only if it can neither be represented nor
approximated by the states of the following form

ϱAB =
k

∑

i=1

piϱ
i
A ⊗ ϱi

B, (38)

where ϱi
A, ϱi

B are defined on local Hilbert spaces HA,
HB. In case of finite dimensional systems, i.e. when
dimHAB < ∞ the states ϱi

A, ϱi
B can be chosen to be

pure. Then, from the Caratheodory theorem it follows
(see (Horodecki, 1997; Vedral and Plenio, 1998)) that the
number k in the convex combination can be bounded
by the square of the dimension of the global Hilbert
space: k ≤ d2

AB = (dAdB)2 where dAB = dimHAB

etc. It happens that for two-qubits the number of states
(called sometimes cardinality) needed in the separable
decomposition is always four which corresponds to di-
mension of the Hilbert space itself (see (Sanpera et al.,
1998; Wootters, 1998)). There are however d ⊗ d states
that for d ≥ 3 have cardinality of order of d4/2 (see
(DiVincenzo et al., 2000b)).

We shall restrict subsequent analysis to the case of
finite dimensions unless stated otherwise.

The set SAB of all separable states defined in this way
is convex, compact and invariant under the product uni-
tary operations UA⊗UB. Moreover the separability prop-
erty is preserved under so called (stochastic) separable
operations (see Sec. XI.B).

The problem is that given any state ϱAB it is very hard
to check whether it is separable or not. In particular,
its separable decomposition may have nothing common
with the eigendecomposition, i.e. there are many sepa-
rable states that have their eigenvectors entangled, i.e.
nonproduct.

It is important to repeat, what the term entanglement
means on the level of mixed states: all states that do not
belong to S, i.e. are not separable (in terms of the above
definition) are called entangled.

In general the problem of separability of mixed states
appears to be extremely complex, as we will see in the
next section. The operational criteria are known only in
special cases.

B. Main separability/entanglement criteria in bipartite case

1. Positive partial transpose (PPT) criterion

Let us consider the characterization of the set of mixed
bipartite separable states. Some necessary separability
conditions have been provided in terms of entropic in-
equalities, but a much stronger criterion has been pro-
vided by Asher Peres (Peres, 1996b), which is called pos-
itive partial transpose (PPT) criterion. It says that if
ϱAB, is separable then the new matrix ϱTB

AB with matrix
elements defined in some fixed product basis as:

⟨m|⟨µ|ϱTB

AB |n⟩|ν⟩ ≡ ⟨m|⟨ν|ϱAB|n⟩|µ⟩ (39)

is a density operator (i.e. has nonnegative spectrum),
which means automatically that ϱTB

AB is also a quantum
state (It also guarantees positivity of ϱTA

AB defined in
analogous way). The operation TB, called partial trans-
pose27, corresponds just to transposition of indices corre-
sponding to the second subsystem and has interpretation
as a partial time reversal (Sanpera et al., 1998). If the
state is represented in a block form

ϱAB =

⎛

⎜

⎝

ϱ00 ϱ01 ... ϱ0 dA−1

ϱ10 ϱ11 ... ϱ1 dA−1

... ... ... ...
ϱdA−1 0 ϱdA−1 1 ... ϱdA−1 dA−1

⎞

⎟

⎠
(40)

with block entries ϱij ≡ ⟨i|⊗ I|ϱAB|j⟩ ⊗ I, then one has

ϱΓ
AB =

⎛

⎜

⎜

⎝

ϱT
00 ϱT

01 ... ϱT
0 dA−1

ϱT
10 ϱT

11 ... ϱT
1 dA−1

... ... ... ...
ϱT

dA−1 0 ϱT
dA−1 1 ... ϱT

dA−1 dA−1

⎞

⎟

⎟

⎠

. (41)

Thus the PPT condition corresponds to transposing
block elements of matrix corresponding to second sub-
system. PPT condition is known to be stronger than
all entropic criteria based on Renyi α-entropy (V) for
α ∈ [0,∞] (Vollbrecht and Wolf, 2002b). A fundamental
fact is (Horodecki et al., 1996a; Peres, 1996b) that PPT
condition is necessary and sufficient condition for sepa-
rability of 2⊗2 and 2⊗3 cases. Thus it gives a complete
characterization of separability in those cases (for more
details or further improvements see Sec. VI.B.2).

2. Separability via positive, but not completely positive maps

Peres PPT condition initiated a general analysis of
the problem of the characterization of separable (equiva-
lently entangled) states in terms of linear positive maps
(Horodecki et al., 1996a). Namely, it can be seen that
the PPT condition is equivalent to demanding the pos-
itivity 28 of the operator [IA ⊗ TB](ϱAB), where TB is
the transposition map acting on the second subsystem.
The transposition map is a positive map (i.e. it maps
any positive operator on HB into a positive one), but it
is not completely positive29. In fact, IA ⊗ TB is not a
positive map and this is the source of success of Peres
criterion.

It has been recognized that any positive (P) but not
completely positive (CP) map Λ : B(HB) → B(HA′) with

27 Following (Rains, 1998) instead of ϱTB
AB we will write ϱΓ

AB (as the
symbol Γ is a right “part” of the letter T ).

28 The operator is called positive iff it is Hermitian and has non-
negative spectrum.

29 The map Θ is completely positive iff I⊗Θ is positive for identity
map I on any finite-dimensional system.
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1989a)) if and only if it can neither be represented nor
approximated by the states of the following form

ϱAB =
k

∑

i=1

piϱ
i
A ⊗ ϱi

B, (38)

where ϱi
A, ϱi

B are defined on local Hilbert spaces HA,
HB. In case of finite dimensional systems, i.e. when
dimHAB < ∞ the states ϱi

A, ϱi
B can be chosen to be

pure. Then, from the Caratheodory theorem it follows
(see (Horodecki, 1997; Vedral and Plenio, 1998)) that the
number k in the convex combination can be bounded
by the square of the dimension of the global Hilbert
space: k ≤ d2

AB = (dAdB)2 where dAB = dimHAB

etc. It happens that for two-qubits the number of states
(called sometimes cardinality) needed in the separable
decomposition is always four which corresponds to di-
mension of the Hilbert space itself (see (Sanpera et al.,
1998; Wootters, 1998)). There are however d ⊗ d states
that for d ≥ 3 have cardinality of order of d4/2 (see
(DiVincenzo et al., 2000b)).

We shall restrict subsequent analysis to the case of
finite dimensions unless stated otherwise.

The set SAB of all separable states defined in this way
is convex, compact and invariant under the product uni-
tary operations UA⊗UB. Moreover the separability prop-
erty is preserved under so called (stochastic) separable
operations (see Sec. XI.B).

The problem is that given any state ϱAB it is very hard
to check whether it is separable or not. In particular,
its separable decomposition may have nothing common
with the eigendecomposition, i.e. there are many sepa-
rable states that have their eigenvectors entangled, i.e.
nonproduct.

It is important to repeat, what the term entanglement
means on the level of mixed states: all states that do not
belong to S, i.e. are not separable (in terms of the above
definition) are called entangled.

In general the problem of separability of mixed states
appears to be extremely complex, as we will see in the
next section. The operational criteria are known only in
special cases.

B. Main separability/entanglement criteria in bipartite case

1. Positive partial transpose (PPT) criterion

Let us consider the characterization of the set of mixed
bipartite separable states. Some necessary separability
conditions have been provided in terms of entropic in-
equalities, but a much stronger criterion has been pro-
vided by Asher Peres (Peres, 1996b), which is called pos-
itive partial transpose (PPT) criterion. It says that if
ϱAB, is separable then the new matrix ϱTB

AB with matrix
elements defined in some fixed product basis as:

⟨m|⟨µ|ϱTB

AB |n⟩|ν⟩ ≡ ⟨m|⟨ν|ϱAB|n⟩|µ⟩ (39)

is a density operator (i.e. has nonnegative spectrum),
which means automatically that ϱTB

AB is also a quantum
state (It also guarantees positivity of ϱTA

AB defined in
analogous way). The operation TB, called partial trans-
pose27, corresponds just to transposition of indices corre-
sponding to the second subsystem and has interpretation
as a partial time reversal (Sanpera et al., 1998). If the
state is represented in a block form

ϱAB =

⎛

⎜

⎝

ϱ00 ϱ01 ... ϱ0 dA−1

ϱ10 ϱ11 ... ϱ1 dA−1

... ... ... ...
ϱdA−1 0 ϱdA−1 1 ... ϱdA−1 dA−1

⎞

⎟

⎠
(40)

with block entries ϱij ≡ ⟨i|⊗ I|ϱAB|j⟩ ⊗ I, then one has

ϱΓ
AB =

⎛

⎜

⎜

⎝

ϱT
00 ϱT

01 ... ϱT
0 dA−1

ϱT
10 ϱT

11 ... ϱT
1 dA−1

... ... ... ...
ϱT

dA−1 0 ϱT
dA−1 1 ... ϱT

dA−1 dA−1

⎞

⎟

⎟

⎠

. (41)

Thus the PPT condition corresponds to transposing
block elements of matrix corresponding to second sub-
system. PPT condition is known to be stronger than
all entropic criteria based on Renyi α-entropy (V) for
α ∈ [0,∞] (Vollbrecht and Wolf, 2002b). A fundamental
fact is (Horodecki et al., 1996a; Peres, 1996b) that PPT
condition is necessary and sufficient condition for sepa-
rability of 2⊗2 and 2⊗3 cases. Thus it gives a complete
characterization of separability in those cases (for more
details or further improvements see Sec. VI.B.2).

2. Separability via positive, but not completely positive maps

Peres PPT condition initiated a general analysis of
the problem of the characterization of separable (equiva-
lently entangled) states in terms of linear positive maps
(Horodecki et al., 1996a). Namely, it can be seen that
the PPT condition is equivalent to demanding the pos-
itivity 28 of the operator [IA ⊗ TB](ϱAB), where TB is
the transposition map acting on the second subsystem.
The transposition map is a positive map (i.e. it maps
any positive operator on HB into a positive one), but it
is not completely positive29. In fact, IA ⊗ TB is not a
positive map and this is the source of success of Peres
criterion.

It has been recognized that any positive (P) but not
completely positive (CP) map Λ : B(HB) → B(HA′) with

27 Following (Rains, 1998) instead of ϱTB
AB we will write ϱΓ

AB (as the
symbol Γ is a right “part” of the letter T ).

28 The operator is called positive iff it is Hermitian and has non-
negative spectrum.

29 The map Θ is completely positive iff I⊗Θ is positive for identity
map I on any finite-dimensional system.



2.  Ontological question: EPR

Einstein-Podolsky-Rosen (1935)

Criterion of Completeness

Every element of the physical 
reality must have a counterpart 
in the physical theory.



If, without in any way disturbing a system, we can predict 
with certainty (i.e., with probability equal to unity) the value 
of a physical quantity, then there exists an element of reality 
corresponding to that quantity.

Criterion of Reality

example: entangled state of two electrons (spin singlet) 

TEST SPACE

∆x ∆p ≥ h̄

2

|C(a, b) − C(a, b′)| + |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =
∫

dλ ρ(λ)A(a,λ) B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1 σi v(σi)
fA(q, p) → A A,B,C, . . . v(A), v(B), v(C), . . .

f(A,B,C, . . .) = 0 =⇒ f(v(A), v(B), v(C), . . .) = 0
σ2

i = 1 ⇒ {v(σi)}2 = 1 ⇒ v(σi) = ±1

ih̄
d

dt
|ψ⟩ = H|ψ⟩

|ψ⟩ ⟨ψ|A|ψ⟩ A H

fA → A, fB → B =⇒ fA + fB → A + B

fA → A =⇒ F (fA) → F (A)

σ(q) σ(p) ≥ h̄

2
ϵ(q) η(p) ≥ h̄

2

ϵ(q) η(p) + σ(q) η(p) + ϵ(q)σ(p) ≥ h̄

2

|ψ⟩|m0⟩ −→ |+⟩|m+⟩ + |−⟩|m−⟩

|ψ⟩ = | + z⟩|− z⟩ − |− z⟩| + z⟩ = | + x⟩|− x⟩ − |− x⟩| + x⟩

+ +

rotational symmetry



perfect correlationTEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

S(∆θ) = |C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)|

S(∆θ) → |3 cos(∆θ)− cos(3∆θ)|

C(a, b) → − cos(∆θ) ∆θ 1 2

λ =
A11 −A01

A10 −A01
λ =

1

5

B(0) = TA(0)T

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

S(∆θ) = |C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)|

S(∆θ) → |3 cos(∆θ)− cos(3∆θ)|

C(a, b) → − cos(∆θ) ∆θ 1 2

λ =
A11 −A01

A10 −A01
λ =

1

5

B(0) = TA(0)T

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

S(∆θ) = |C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)|

S(∆θ) → |3 cos(∆θ)− cos(3∆θ)|

C(a, b) → − cos(∆θ) ∆θ 1 2

λ =
A11 −A01

A10 −A01
λ =

1

5

B(0) = TA(0)T

measurement of 
one electron

because of the rotational 
symmetry of the singlet state, 
we can measure the spin in 
any direction (component) we 
like and still observe the same 
perfect correlation

 or



A B

if we separate the two electrons far apart

far away

measuring A will not affect B B will not be disturbed

locality

A B

value of A value of B reality of the value of B

but we can choose any component for measurement of A

any spin component of B must possess physical reality

correlation



since different spin components cannot 
be measured simultaneously, they cannot 
be discussed as physical reality in the 
same experimental context

context determines physical reality!

but QM does not allow two components of spin determined simultaneously

therefore, QM is not complete as a physical theory!

reality of physical quantities can 
be discussed only when they can 
be observed simultaneously

 Bohr’s objection (1935)



Bell (1928 - 1990)

hidden variable
probability
distribution

Reality

external parameters

Locality
outcome independence

parameter independence

Is local realism admissible experimentally? 

3.  Quantum correlation: Bell’s inequality



correlations in local realistic theory

correlation

measurement
outcome

TEST SPACE

|C(a, b) � C(a, b⇥)| + |C(a⇥, b⇥) + C(a⇥, b)| ⇤ 2

C(a, b) =
�

d� ⇥(�) A(a,�)B(b,�)

A(a,�) = ±1 B(b,�) = ±1

fA(q, p) ⌅ A

ih̄
d

dt
|⇤⌥ = H|⇤⌥

|⇤⌥ ⌃⇤|A|⇤⌥ A H

fA ⌅ A, fB ⌅ B =⇧ fA + fB ⌅ A + B

fA ⌅ A =⇧ F (fA) ⌅ F (A)

|⇤⌥|m0⌥ �⌅ |+⌥|m+⌥ + |�⌥|m�⌥

|⇤⌥ = | + z⌥|� z⌥ � |� z⌥| + z⌥ = | + x⌥|� x⌥ � |� x⌥| + x⌥

TEST SPACE

|C(a, b) � C(a, b⇥)| + |C(a⇥, b⇥) + C(a⇥, b)| ⇤ 2

C(a, b) =
�

d� ⇥(�) A(a,�)B(b,�)

A(a,�) = ±1 B(b,�) = ±1

fA(q, p) ⌅ A

ih̄
d

dt
|⇤⌥ = H|⇤⌥

|⇤⌥ ⌃⇤|A|⇤⌥ A H

fA ⌅ A, fB ⌅ B =⇧ fA + fB ⌅ A + B

fA ⌅ A =⇧ F (fA) ⌅ F (A)

|⇤⌥|m0⌥ �⌅ |+⌥|m+⌥ + |�⌥|m�⌥

|⇤⌥ = | + z⌥|� z⌥ � |� z⌥| + z⌥ = | + x⌥|� x⌥ � |� x⌥| + x⌥

TEST SPACE

|C(a, b) � C(a, b⇥)| + |C(a⇥, b⇥) + C(a⇥, b)| ⇤ 2

C(a, b) =
�

d� ⇥(�) A(a,�)B(b,�)

A(a,�) = ±1 B(b,�) = ±1

fA(q, p) ⌅ A

ih̄
d

dt
|⇤⌥ = H|⇤⌥

|⇤⌥ ⌃⇤|A|⇤⌥ A H

fA ⌅ A, fB ⌅ B =⇧ fA + fB ⌅ A + B

fA ⌅ A =⇧ F (fA) ⌅ F (A)

|⇤⌥|m0⌥ �⌅ |+⌥|m+⌥ + |�⌥|m�⌥

|⇤⌥ = | + z⌥|� z⌥ � |� z⌥| + z⌥ = | + x⌥|� x⌥ � |� x⌥| + x⌥

combination of correlations

Bell (CHSH) 
inequality 

TEST SPACE

|C(a, b) � C(a, b⇥)| + |C(a⇥, b⇥) + C(a⇥, b)| ⇤ 2

C(a, b) =
�

d� ⇥(�) A(a,�)B(b,�)

A(a,�) = ±1 B(b,�) = ±1

fA(q, p) ⌅ A

ih̄
d

dt
|⇤⌥ = H|⇤⌥

|⇤⌥ ⌃⇤|A|⇤⌥ A H

fA ⌅ A, fB ⌅ B =⇧ fA + fB ⌅ A + B

fA ⌅ A =⇧ F (fA) ⌅ F (A)

|⇤⌥|m0⌥ �⌅ |+⌥|m+⌥ + |�⌥|m�⌥

|⇤⌥ = | + z⌥|� z⌥ � |� z⌥| + z⌥ = | + x⌥|� x⌥ � |� x⌥| + x⌥

Bell (1964)

( = our classical world)

probability
distribution



TEST SPACE

|ψ⟩ = | + z⟩|− z⟩ + |− z⟩| + z⟩??? v(A) = λ(A)

C = A + B v(C) = v(A) + v(B) v(A) = ±1, v(B) = ±1

A = σx B = σy A + B = σx + σy

v(A + B) = ±
√

2 v(A + B) ≠ v(A) + v(B)

|C(a, b) − C(a, b′)| + |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =
∫

dλ ρ(λ)A(a,λ) B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b) − C(a, b′)

=
∫

dλ ρ(λ) [A(a,λ)B(b,λ) − A(a,λ)B(b′,λ)]

=
∫

dλ ρ(λ) A(a, λ)B(b,λ) [1 ± A(a′,λ)B(b′, λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1 ± A(a′,λ)B(b, λ)]

Proof:

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1±A(a′,λ)B(b,λ)]

|C(a, b)− C(a, b′)| ≤
∫

dλ ρ(λ) [1±A(a′,λ)B(b′,λ)]

+

∫
dλ ρ(λ) [1±A(a′,λ)B(b,λ)]

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1±A(a′,λ)B(b,λ)]

|C(a, b)− C(a, b′)| ≤
∫

dλ ρ(λ) [1±A(a′,λ)B(b′,λ)]

+

∫
dλ ρ(λ) [1±A(a′,λ)B(b,λ)]

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1±A(a′,λ)B(b,λ)]

|C(a, b)− C(a, b′)| ≤
∫

dλ ρ(λ) [1±A(a′,λ)B(b′,λ)]

+

∫
dλ ρ(λ) [1±A(a′,λ)B(b,λ)]

from triangular inequality

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1±A(a′,λ)B(b,λ)]

|C(a, b)− C(a, b′)| ≤
∫

dλ ρ(λ) [1±A(a′,λ)B(b′,λ)]

+

∫
dλ ρ(λ) [1±A(a′,λ)B(b,λ)]

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫

dλ ρ(λ)A(a,λ)B(b′,λ) [1±A(a′,λ)B(b,λ)]

|C(a, b)− C(a, b′)| ≤
∫

dλ ρ(λ) [1±A(a′,λ)B(b′,λ)]

+

∫
dλ ρ(λ) [1±A(a′,λ)B(b,λ)]

= 2± [C(a′, b′) + C(a′, b)]

S(∆θ) = |C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)|

S(∆θ) → |3 cos(∆θ)− cos(3∆θ)|

C(a, b) → − cos(∆θ) ∆θ 1 2

λ =
A11 −A01

A10 −A01
λ =

1

5

B(0) = TA(0)T

2

TEST SPACE

|ψ⟩ = |+ z⟩|− z⟩+ |− z⟩|+ z⟩

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

A |ϕi⟩ = ai|ϕi⟩ Prob(A = ai) = |⟨ϕi|ψ⟩|2

C(a, b)− C(a, b′)

=

∫
dλ ρ(λ) [A(a,λ)B(b,λ)−A(a′,λ)B(b′,λ)]

=

∫
dλ ρ(λ)A(a,λ)B(b,λ) [1±A(a′,λ)B(b′,λ)]

−
∫
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4. CONFLICT WITH QUANTUM MECHANICS 

4.1. Evidence 

We can use the predictions (6) of Quantum Mechanics for EPR pairs, to evaluate the 
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Figure 4 - Orientations yielding the largest conflict between Bell’s inequalities and Quantum 

Mechanics. 
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FIG. 1. Bell test schematic and experimental realisation. (a) Bell test setup: Two boxes, A and B, accept binary inputs
(a, b) and produce binary outputs (x, y). In an event-ready scenario, an additional box C gives a binary output signalling that
the boxes A and B were successfully prepared. (b) Experimental realisation. The setup comprises three separate laboratories,
A, B and C. The boxes at location A and B each contain a single NV centre electron spin in diamond. A quantum random
number generator (RNG) is used to provide the input to the box. The spin is read out in a basis that depends on the input
bit and the resulting signal provides the output of the box. A third box at location C records the arrival of single photons that
were previously emitted by, and are entangled with, the spins at A and B. The detection of two such photons constitutes the
event-ready signal. (c) Detailed experimental setup at A and B. The electronic spin associated with a single nitrogen vacancy
(NV) centre in diamond is located in a low temperature confocal microscope setup (Obj). A fast switch (Sw) transmits only
one out of two di↵erent microwave (MW) pulses (P0 and P1), depending on the output of a quantum random number generator
(RNG). The microwave pulses are then applied via a gold strip-line deposited on the diamond surface (inset, scanning electron
microscope image of a similar device). The optical frequencies of the NV are tuned by a d.c. electric field applied to on-chip
gate electrodes (inset). Pulsed red and yellow lasers are used to resonantly excite the optical transitions of the NV centre. The
emission (dashed arrows) is spectrally separated into an o↵-resonant part (phonon side band, PSB) and a resonant part (zero-
phonon line, ZPL), using a dichroic mirror (DM). The PSB emission is detected with a single-photon counter (APD), whose
detection events are recorded together with the generated random numbers by a time-tagging device. The ZPL emission is
mostly transmitted through a beam-sampler (BS, reflection  4%) and two wave plates (�/2 and �/4), after which it is coupled
to a single mode fibre that guides the light to location C. (d) Setup at location C. The single-mode fibres from locations A and
B are connected to the input ports of a fibre-based beam splitter (FBS) after passing a fibre-based polarizer (POL). Photons
in the two output ports are detected using single photon counters, and detection events are recorded. (e) Aerial photograph
of the campus of Delft University of Technology indicating the distances between locations A, B and C. The red dotted line
marks the path of the fibre-connection.



4.  Tools to quantify entanglement

Schmidt rank

For a system consisting two subsystems (bipartite system)  
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that

∑k
i=1 x↓

i ≤
∑k

i=1 y↓
i ,

1 ≤ k ≤ d − 1 and the equality holds for k = d,
x↓

i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
a state. This criterion is stronger than entropic cri-
terion (30) and it again supports the view that “sep-
arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).

VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:

|ΨAB⟩ =
dA−1
∑

i=0

dB−1
∑

j=0

AΨ
ij |ei

A⟩ ⊗ |ej
B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.
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Only in few cases this question has simple answer. The
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dance with definition of multipartite entangled states
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A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.
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is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
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n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,
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A⟩ ⊗ |ẽj
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arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).

VI. BIPARTITE ENTANGLEMENT

A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:

|ΨAB⟩ =
dA−1
∑

i=0

dB−1
∑

j=0

AΨ
ij |ei

A⟩ ⊗ |ej
B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =

A, B.
26 T denotes transposition.
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that

∑k
i=1 x↓

i ≤
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i=1 y↓
i ,

1 ≤ k ≤ d − 1 and the equality holds for k = d,
x↓

i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).
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for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
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B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
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correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
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Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
resource to perform some concrete tasks.

Indeed, the violation of the Bell inequalities determines
usefulness of quantum states for the sake of specific non-
classical tasks, such as e.g. reduction of communication
complexity, or quantum cryptography (see Sec.III). Sim-
ilarly, the violation of the entropic inequalities based on
the von Neumann entropy (31) determines the usefulness
of states as a potential for quantum communication. It
is in agreement with the earlier results, that the negative
value of the function S(A|B) is connected with the ability
of the system to perform teleportation (Cerf and Adami,
1997; Horodecki and Horodecki, 1996) as well as with
nonzero capacity of a quantum channel (Devetak, 2003;
Lloyd, 1997; Schumacher and Nielsen, 1996).

C. Majorization relations

In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
inequalities

λ(ρ) ≺ λ(ρA) λ(ρ) ≺ λ(ρB) (34)

has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
relation x ≺ y between d-dimensional vectors x and y
(x is majorized by y) means that
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1 ≤ k ≤ d − 1 and the equality holds for k = d,
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i (1 ≤ i ≤ d) are components of vector x rearranged

in decreasing order; y↓
i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
for separability of bipartite states in arbitrary dimen-
sions in terms of the local and the global spectra of
a state. This criterion is stronger than entropic cri-
terion (30) and it again supports the view that “sep-
arable states are more disordered globally than locally”
(Nielsen and Kempe, 2001). An alternative proof of this
result have been found (Gurvits and Barnum, 2005).
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A. Definition and basic properties

The fundamental question in quantum entanglement
theory is which states are entangled and which are not.
Only in few cases this question has simple answer. The
simplest is the case of pure bipartite states. In accor-
dance with definition of multipartite entangled states
(Sec. (II) any bipartite pure state |ΨAB⟩ ∈ HAB =

HA⊗HB is called separable (entangled) iff it can be (can
not be) written as a product of two vectors corresponding
to Hilbert spaces of subsystems:

|ΨAB⟩ = |φA⟩|ψB⟩. (35)

In general if the vector ΨAB is written in any orthonor-
mal product basis {|ei

A⟩ ⊗ |ej
B⟩} as follows25:
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∑
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B⟩, (36)

then it is product if and only if the matrix of coefficients
AΨ = {AΨ

ij} is of rank one. In general the rank r(Ψ) ≤
k ≡ min[dA, dB ] of this matrix is called Schmidt rank
of vector Ψ and it is equal to either of ranks of the
reduced density matrices ϱΨ

A = TrB |ΨAB⟩⟨ΨAB |, ϱΨ
B =

TrA|ΨAB⟩⟨ΨAB| (which satisfy ϱΨ
A = AΨ(AΨ)† and ϱΨ

A =
[(AΨ)†AΨ]T respectively26). In particular there always
exists such a product bi-orthonormal basis {|ẽi

A⟩ ⊗ |ẽj
B⟩}

in which the vector takes the Schmidt decomposition:

|ΨAB⟩ =

r(Ψ)
∑

i=0

ai|ẽi
A⟩ ⊗ |ẽi

B⟩, (37)

where the strictly positive numbers ai = {√pi}
correspond to the nonzero singular eigenvalues
(Nielsen and Chuang, 2000) of AΨ, and pi are the
nonzero elements of the spectrum of either of the
reduced density matrices.

Quantum entanglement is in general both quantita-
tively and qualitatively considered to be a property in-
variant under product unitary operations UA⊗UB. Since
in case of pure vector and the corresponding pure state
(projector) |ΨAB⟩⟨ΨAB| the coefficients {ai} are the
only parameters that are invariant under such opera-
tions, they completely determine entanglement of bipar-
tite pure state.

In particular, it is very easy to see that pure state
(projector)|ΨAB⟩⟨ΨAB | is separable iff the vector ΨAB

is product. Equivalently the rank of either of reduced
density matrices ϱA, ϱB is equal to 1, or there is sin-
gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.

So far we have considered entanglement of pure states.
Due to decoherence phenomenon, in laboratories we un-
avoidably deal with mixed states rather than pure ones.
However mixed state still can contain some “noisy” en-
tanglement. In accordance with general definition for
n-partite state (II) any bipartite state ϱAB defined on
Hilbert space HAB = HA⊗HB is separable (see (Werner,

25 Here the orthonormal basis {|ei
X⟩} spans subspace HX , X =
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26 T denotes transposition.
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seemingly academic issues, of merely philosophical rele-
vance. What is perhaps the most surprising twist, is
that both the above features qualify entanglement as a
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nonzero capacity of a quantum channel (Devetak, 2003;
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In 2001 Nielsen and Kempe discovered a stronger
version of the “classical versus quantum order”
(Nielsen and Kempe, 2001), which connects the ma-
jorization concept and entanglement. Namely they
proved, that if a state is separable than the following
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has to be fulfilled. Here λ(ρ) is a vector of eigenval-
ues of ρ; λ(ρA) and λ(ρB) are defined similarly. The
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i (1 ≤ i ≤ d) are defined similarly.

Zeros are appended to the vectors λ(ρA), λ(ρB) in (34),
in order to make their dimension equal to the one of λ(ρ).

The above inequalities constitute necessary condition
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sions in terms of the local and the global spectra of
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correspond to the nonzero singular eigenvalues
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nonzero elements of the spectrum of either of the
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tively and qualitatively considered to be a property in-
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in case of pure vector and the corresponding pure state
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gle nonzero Schmidt coefficient. Thus for bipartite pure
states it is elementary to decide whether the state is sep-
arable or not by diagonalizing its reduced density matrix.
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1989a)) if and only if it can neither be represented nor
approximated by the states of the following form

ϱAB =
k

∑

i=1

piϱ
i
A ⊗ ϱi

B, (38)

where ϱi
A, ϱi

B are defined on local Hilbert spaces HA,
HB. In case of finite dimensional systems, i.e. when
dimHAB < ∞ the states ϱi

A, ϱi
B can be chosen to be

pure. Then, from the Caratheodory theorem it follows
(see (Horodecki, 1997; Vedral and Plenio, 1998)) that the
number k in the convex combination can be bounded
by the square of the dimension of the global Hilbert
space: k ≤ d2

AB = (dAdB)2 where dAB = dimHAB

etc. It happens that for two-qubits the number of states
(called sometimes cardinality) needed in the separable
decomposition is always four which corresponds to di-
mension of the Hilbert space itself (see (Sanpera et al.,
1998; Wootters, 1998)). There are however d ⊗ d states
that for d ≥ 3 have cardinality of order of d4/2 (see
(DiVincenzo et al., 2000b)).

We shall restrict subsequent analysis to the case of
finite dimensions unless stated otherwise.

The set SAB of all separable states defined in this way
is convex, compact and invariant under the product uni-
tary operations UA⊗UB. Moreover the separability prop-
erty is preserved under so called (stochastic) separable
operations (see Sec. XI.B).

The problem is that given any state ϱAB it is very hard
to check whether it is separable or not. In particular,
its separable decomposition may have nothing common
with the eigendecomposition, i.e. there are many sepa-
rable states that have their eigenvectors entangled, i.e.
nonproduct.

It is important to repeat, what the term entanglement
means on the level of mixed states: all states that do not
belong to S, i.e. are not separable (in terms of the above
definition) are called entangled.

In general the problem of separability of mixed states
appears to be extremely complex, as we will see in the
next section. The operational criteria are known only in
special cases.

B. Main separability/entanglement criteria in bipartite case

1. Positive partial transpose (PPT) criterion

Let us consider the characterization of the set of mixed
bipartite separable states. Some necessary separability
conditions have been provided in terms of entropic in-
equalities, but a much stronger criterion has been pro-
vided by Asher Peres (Peres, 1996b), which is called pos-
itive partial transpose (PPT) criterion. It says that if
ϱAB, is separable then the new matrix ϱTB

AB with matrix
elements defined in some fixed product basis as:

⟨m|⟨µ|ϱTB

AB |n⟩|ν⟩ ≡ ⟨m|⟨ν|ϱAB|n⟩|µ⟩ (39)

is a density operator (i.e. has nonnegative spectrum),
which means automatically that ϱTB

AB is also a quantum
state (It also guarantees positivity of ϱTA

AB defined in
analogous way). The operation TB, called partial trans-
pose27, corresponds just to transposition of indices corre-
sponding to the second subsystem and has interpretation
as a partial time reversal (Sanpera et al., 1998). If the
state is represented in a block form

ϱAB =

⎛

⎜

⎝

ϱ00 ϱ01 ... ϱ0 dA−1

ϱ10 ϱ11 ... ϱ1 dA−1

... ... ... ...
ϱdA−1 0 ϱdA−1 1 ... ϱdA−1 dA−1

⎞

⎟

⎠
(40)

with block entries ϱij ≡ ⟨i|⊗ I|ϱAB|j⟩ ⊗ I, then one has

ϱΓ
AB =

⎛

⎜

⎜

⎝

ϱT
00 ϱT

01 ... ϱT
0 dA−1

ϱT
10 ϱT

11 ... ϱT
1 dA−1

... ... ... ...
ϱT

dA−1 0 ϱT
dA−1 1 ... ϱT

dA−1 dA−1

⎞

⎟

⎟

⎠

. (41)

Thus the PPT condition corresponds to transposing
block elements of matrix corresponding to second sub-
system. PPT condition is known to be stronger than
all entropic criteria based on Renyi α-entropy (V) for
α ∈ [0,∞] (Vollbrecht and Wolf, 2002b). A fundamental
fact is (Horodecki et al., 1996a; Peres, 1996b) that PPT
condition is necessary and sufficient condition for sepa-
rability of 2⊗2 and 2⊗3 cases. Thus it gives a complete
characterization of separability in those cases (for more
details or further improvements see Sec. VI.B.2).

2. Separability via positive, but not completely positive maps

Peres PPT condition initiated a general analysis of
the problem of the characterization of separable (equiva-
lently entangled) states in terms of linear positive maps
(Horodecki et al., 1996a). Namely, it can be seen that
the PPT condition is equivalent to demanding the pos-
itivity 28 of the operator [IA ⊗ TB](ϱAB), where TB is
the transposition map acting on the second subsystem.
The transposition map is a positive map (i.e. it maps
any positive operator on HB into a positive one), but it
is not completely positive29. In fact, IA ⊗ TB is not a
positive map and this is the source of success of Peres
criterion.

It has been recognized that any positive (P) but not
completely positive (CP) map Λ : B(HB) → B(HA′) with

27 Following (Rains, 1998) instead of ϱTB
AB we will write ϱΓ

AB (as the
symbol Γ is a right “part” of the letter T ).

28 The operator is called positive iff it is Hermitian and has non-
negative spectrum.

29 The map Θ is completely positive iff I⊗Θ is positive for identity
map I on any finite-dimensional system.s.t.
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of that type that are not equivalent to realignment is an
open problem.

Quite remarkably the realignment criterion has
been found to detect some of PPT entanglement
(Chen and Wu, 2003)(see also (Rudolph, 2003)) and to
be useful for construction of some nondecomposable
maps. It also provides nice lower bound on concurrence
function (see (Chen et al., 2005b)). On the other hand
it happens that for any state that violates the realign-
ment criterion there is a local uncertainty relation (LUR)
(see Sec. VIII.A) that is violated but converse statement
is not always true (Gühne et al., 2006a). On the other
hand finding LUR-s (like finding original entanglement
witnesses) is not easy in general and there is no prac-
tical characterization of LUR-s known so far, while the
realignment criterion is elementary, fast in application
and still powerful enough to detect PPT entanglement.

9. Some classes of important quantum states: entanglement
regions of parameters

In this section we shall recall classes of states or which
PPT property is equivalent to separability.

We shall start from Werner states that are linked
to one of the most intriguing problem of entangle-
ment theory namely NPT bound entanglement problem
(DiVincenzo et al., 2000a; Dür et al., 2000a) (see Sec.
XII).

Werner d⊗ d states (Werner, 1989a) .- Define projec-
tors P (+) = (I + V )/2, P (−) = (I − V )/2 with identity I
, and “flip” operation V (48):

The following d ⊗ d state

W (p) = (1 − p)
2

d2 + d
P (+) + p

2

d2 − d
P (−), 0 ≤ p ≤ 1

(71)
is invariant under any U⊗U operation for any unitary U .
W (p) is separable iff it is PPT which holds for 0 ≤ p ≤ 1

2 .
Isotropic states (Horodecki and Horodecki, 1999) .-

They are U ⊗ U∗ invariant (for any unitary U) d ⊗ d
states. They are of the form

ϱF =
1 − F

d2 − 1
I +

Fd2 − 1

d2 − 1
P+, 0 ≤ F ≤ 1 (72)

(with P+ defined by (50)). An isotropic state is separable
iff it is PPT which holds for 0 ≤ F ≤ 1

d .
“Low global rank class” (Horodecki et al., 2000e) .-

The general class of dA ⊗ dB state of all states which
have global rank not greater than local ones: r(ϱAB) ≤
max[r(ϱA), r(ϱB)]. Here again PPT condition is equiva-
lent to separability. In particular for r(ϱAB) = r(ϱA) =
r(ϱB) the PPT property of ϱAB implies separability
(Horodecki et al., 2000e). If r(ϱAB) < max[r(ϱA), r(ϱB)]
(which corresponds to violation of entropic criterion
for α = ∞) then PPT test is violated, because re-
duction criterion is stronger than S∞ entropy criterion
(Horodecki et al., 2003f).

10. Characterization of bipartite separability in terms of
biconcurrence

In this section we shall describe a quadratic function
of the state that provides necessary and sufficient con-
dition for separability called biconcurrence. This func-
tion was inspired by a generalization of two-qubit Woot-
ters’ concurrence due to (Rungta et al., 2001), that ex-
ploited the universal state inverter, which in turn is
actually the reduction map Λred (see Sec. VI.B.6).
The generalized concurrence can be written in the form

C(ψAB) =
√

1
2 ⟨ψAB |[Λred

A ⊗ Λred
B ](|ψAB⟩⟨ψAB |)|ψAB⟩ =

√

2(1 − Tr(ϱ2
B), which directly reproduces Wootters’

concurrence in case of two-qubits (see Sec. XV.C.2.b).
In (Badzia̧g et al., 2002), a simplified form was obtained:

C(ψ) =
√

⟨ψAB |[IA ⊗ Λred
B ](|ψAB⟩⟨ψAB |)|ψAB⟩

=
√

1 − Tr(ϱ2
B). (73)

Now for any ensemble realizing mixed state ϱ =
∑k

i=1 pi|ψ̃i
AB⟩⟨ψ̃i

AB| with k ≤ N := (dAdB)2 and |ψi⟩ :=
√

pi|ψ̃i
AB⟩, the N ⊗ N biconcurrence matrix Bmµ,nν is

defined as:

Bmµ,nν ≡ ⟨ψm|[I ⊗ Λred](|ψµ⟩⟨ψn|)|ψν⟩ (74)

(we have dropped here the subsystem indices AB and
extended the ensemble to N -element one by adding extra
N − k zero vectors). It can be written equivalently as35

Bmµ,nν = ⟨ψm|ψn⟩⟨ψµ|ψν⟩ − Tr[(Aψm)†Aψµ(Aψn)†Aψν ]
(75)

with the matrix of coefficients Aψ defined by the relation
ψ =

∑dA−1
i=0

∑dB−1
j=0 Aψ

ij |i⟩|j⟩. Now, there is an important
observation namely the state ϱAB is separable if and only
if the scalar biconcurrence function

B(ϱ) := inf
U

N
∑

m=1

[U ⊗ UBU † ⊗ U †]mm,mm (76)

vanishes (Badzia̧g et al., 2002). Here infimum (equal to
minimum) is taken over all unitary operations U defined
on Hilbert space H (dimH = d2

Ad2
B) while the matrix

B represents operator on H ⊗ H. As a matter of fact
value of the biconcurrence function (76) is just the square
of Euclidean norm of concurrence vector introduced in
(Audenaert et al., 2001c) (see sec. XV.C.2.b).

It is interesting that, as one can easily show, B(ϱ) =

inf{pi,ψi}
∑N

i=1 p2
i C(ψi)2 where infimum is taken over all

N -element ensembles realizing given state ϱ. Note that

35 A simple expression for biconcurrence was exhibited in

(Mintert et al., 2004). Bm,µ,n,ν = ⟨ψm|⟨ψµ|P (−)
AA′ ⊗

P (−)
BB′ |ψn⟩|ψν⟩.
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codomain related to some new Hilbert space HA′ provides
nontrivial necessary separability criterion in the form:

[IA ⊗ ΛB](ϱAB) ≥ 0. (42)

This corresponds to nonnegativity of spectrum of the fol-
lowing matrix:

[IA ⊗ ΛB](ϱAB)

=

⎛

⎜

⎝

Λ(ϱ00) ... Λ(ϱ0 dA−1)
Λ(ϱ10) ... Λ(ϱ1 dA−1))

... ... ...
Λ(ϱdA−1 0) ... Λ(ϱdA−1 dA−1)

⎞

⎟

⎠
(43)

with ϱij defined again as in (40).
It happens that using the above technique one can pro-

vide a necessary and sufficient condition for separability
(see (Horodecki et al., 1996a)): the state ϱAB is separa-
ble if and only if the condition (42) is satisfied for all P
but not CP maps Λ : B(HB) → B(HA) where HA, HB

describe the left and right subsystems of the system AB.
Note that the set of maps can be further restricted

to all P but not CP maps that are identity-preserving
(Horodecki, 2001b) (the set of witnesses can be then also
restricted via the isomorphism). One could also restrict
the maps to trace preserving ones, but then one has to
enlarge the codomain (Horodecki et al., 2006d).

Given characterization in terms of maps and witnesses
it was natural to ask about a more practical characteriza-
tion of separability/entanglement. The problem is that in
general the set of P but not CP maps is not characterized
and it involves a hard problem in contemporary linear
algebra (for progress in this direction see (Kossakowski,
2003) and references therein).

However for very low dimensional systems there is sur-
prisingly useful solution (Horodecki et al., 1996a): the
states of dA ⊗ dB with dAdB ≤ 6 (two-qubits or qubit-
qutrit systems) are separable if and only if they are
PPT. Recently even a simpler condition for two-qubit
systems (and only for them) has been pointed out
(Augusiak et al., 2006) which is important in context of
physical detections (see Secs. VIII.C.2 and VIII.C.3) :
two-qubit state ϱAB is separable iff

det(ϱΓ
AB) ≥ 0. (44)

This is the simplest two-qubit separability condition. It
is a direct consequence of two facts known earlier but
never exploited in such a way: the partial transpose
of any entangled two-qubit state (i) is of full rank and
has only one negative eigenvalue. (Sanpera et al., 1998;
Verstraete et al., 2001a). Note that some generalizations
of (44) for other maps and dimensions are also possible
(Augusiak et al., 2006).

The sufficiency of the PPT condition for separability
in low dimensions follows from the fact (Størmer, 1963;
Woronowicz, 1976) that all positive maps Λ : B(Cd) →
B(Cd′

) where d = 2, d′ = 2 and d = 2, d′ = 3 are decom-
posable, i.e. are of the form:

Λdec = Λ(1)
CP + Λ(2)

CP ◦ T, (45)

ϱsep

ϱent

W

Tr(Wϱsep) ≥ 0

Tr(Wϱent) < 0

FIG. 2 The line represents hyperplane corresponding to the
entanglement witness W . All states located to the left of
the hyperplane or belonging to it (in particular all separable
states) provide nonnegative mean value of the witness, i.e.
Tr(Wϱsep) ≥ 0 while those located to the right are entangled
states detected by the witness.

where Λ(i)
CP stand for some CP maps and T stands for

transposition. It can be easily shown (Horodecki et al.,
1996a) that among all decomposable maps the transpo-
sition map T is the “strongest” map i.e. there is no de-
composable map that can reveal entanglement which is
not detected by transposition.

3. Separability via entanglement witnesses

Entanglement witnesses (Horodecki et al., 1996a;
Terhal, 2000a) are fundamental tool in quantum entan-
glement theory. They are observables that completely
characterize separable states and allow to detect en-
tanglement physically. Their origin stems from geome-
try: the convex sets can be described by hyperplanes.
This translates into the statement (see (Horodecki et al.,
1996a; Terhal, 2000a)) that the state ϱAB belongs to the
set of separable if it has nonnegative mean value

Tr(WϱAB) ≥ 0 (46)

for all observables W that (i) have at least one negative
eigenvalue and (ii) have nonnegative mean value on prod-
uct states or — equivalently — satisfy the nonnegativity
condition

⟨ψA|⟨φB |W |ψA⟩|φB⟩ ≥ 0. (47)

for all pure product states |ψA⟩|φB⟩ The observables
W satisfying conditions (i) and (ii) above 30 have been
named entanglement witnesses and their physical impor-
tance as entanglement detectors was stressed in (Terhal,
2000a) in particular one says that entanglement of ϱ is
detected by witness W iff Tr(Wϱ) < 0, see fig. 2. (We

30 The witnesses can be shown to be isomorphic to P but not CP
maps, see Eq. (49).

Remark: quantifying entanglement for multipartite mixed states is a difficult 
problem and still under investigation.



5.  Some characteristic properties

Quantum key distribution

Entanglement exhibits eminent properties to be used for various purposes 

perfect correlation

If someone (Eve) eavesdrops in between, 
then Bell’s inequality is maintained
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in. The protocol discussed in this article is a modification
of the original Bennett and Brassard protocol and takes
into consideration EPR states.

In 1991 Artur Ekert proposed that quantum key dis-
tribution be implemented using the quantum entangled
states explored in the EPR thought experiment. In Ek-
ert’s protocol instead of Alice sending particles to Bob,
there is a central source creating entangled particles and
sending one to Alice and one to Bob. The Ekert protocol
more accurately reflects future real life situations, since
due to distance limitations, a practical implementation
of quantum cryptography would involve a central source,
such as a satellite, sending signals to multiple receivers.

Although many physical quantities (observables) can
be used to explain the creation of quantum entanglement,
Ekert used quantum states called spin singlets. Quantum
entanglement is the inability to define the quantum state
of one object without reference to the quantum state of
another object far away from the first. Although no con-
clusions can be made about the individual states of the
objects, the quantum state of both objects is well defined.
Rather than trusting the source, which could be in Eve’s
hands, Ekert set up the protocol, such that the source
emits pairs of spin- 1/2 particles in singlet states :

� =
1p
2
(|"#i+ |#"i) (1)

The equation above demonstrates that in state I (first
bracket), particle A has a spin pointing up and particle
B has a spin pointing down . In state II (second bracket)
particle A has spin pointing down and particle B has
spin pointing up. This can be called the superposition
of states, in which the combined state of both particles
is well defined, however it is unknown which way either
particle is spinning. It other words, although it is known
that one particle is spinning up, and the other spinning
down, it is impossible to tell which particle is which until
a measurement is made.

Both Alice and Bob must randomly pick one of
three coplanar axes in which to measure the incoming
particles. These three bases can be mathematically
represented by defining the vectors ai (i = 1,2,3) (for
Alice) and bj (j=1,2,3) (for Bob)[2]. If the particles are
traveling along the z direction, the vectors ai and bj are
defined as being located in the x-y plane (perpendicular
to the trajectory of the particles). By using the vertical
x axis from which to measure the angles, the vectors
ai and bj can be described by �a

1 = 0 �, �a
2 = 45 �,

�a
3 = 90 �, and �b

1 = 45 �, �b
2 = 90 � and �b

3 = 135 �

[2]. The a and b superscripts describe the orientation
of Alice and Bob’s analyzer’s respectively. Figure one
shows a visual representation of the above described
bases.

FIG. 1: An illustration of the described bases on the Poincare

sphere. Measuring from the positive x-axis, one can see that

Alice’s bases are lined up at 0
�
, 45

�
and 90

�
angles, while

Bob’s are located at 45
�
, 90

�
and 135

�
.

It is clear from the explanation above that there is a
1/3 chance that Alice and Bob will chose compatible ba-
sis in which to measure the incoming particles. If Alice
and Bob chose a compatible basis, and Alice measures
a spin up particle, the quantum state of the system col-
lapses into state I, and the probability of Bob measuring
a spin down particle is 100%. Similarly, if Alice observes
a particle with spin down, Bob will detect a spin up par-
ticle with 100% certainty. However, when Alice and Bob
decide to measure the spins in incompatible bases, this
experiment becomes interesting. If Alice measures the
particles in one basis, Bob’s measurement outcome will
be random when measured in a non-compatible basis.
For example, if Alice detects a spin up particle in the
45 � basis, there exists an equal probability that Bob will
uncover a spin up or spin down particle in the 90 � basis.
This implies that Bob’s particle ”knows” how Alice’s par-
ticle was measured, and orients itself accordingly. There
must exist some form of action at a distance that informs
Bob’s particle which basis Alice used, so that Bob’s parti-
cle can decide weather it should compliment Alice’s mea-
surement in the same basis, or pick a random orientation
if incompatible bases are chosen. The fact that Alice
and Bob’s particles are aware of each other’s presence,
is what makes the entanglement phenomenon defy the
classical rules of locality and realism. Quantum cryptog-
raphy experiments have proved that this ”spooky action
at a distance” Einstein ridiculed, is a reality.

So if Alice and Bob choose compatible bases, their mea-
surement results will be anti-correlated, meaning Bob’s
particle will have spin up, and Alice’s will have spin down,
and vice versa. In order to discard the random measure-
ments Alice and Bob made in incompatible basis, the two
participants must publicly announce which basis the par-
ticles were measured in. They can then discard results
obtained in incompatible basis, without actually reveal-
ing the outcomes of their measurements. This sifting
process shrinks the key down to 30% of its original size,
leaving them with a sifted key. Within the sifted key, the
spin up and spin down states of the particles correspond
to bit values 1 and 0 respectively.

The fact that entangled states are used is one the
things that makes it hard for eavesdropper to gain in-
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In the next section, we will present briefly pioneering
entanglement-based communications schemes using Bell
entangled states.

III. PIONEERING EFFECTS BASED ON
ENTANGLEMENT

A. Quantum key distribution based on entanglement

The first invention of quantum information theory,
which involves entanglement, was done by A. Ekert
(Ekert, 1991). There were two well known facts: exis-
tence of highly correlated state17

|ψ−⟩ =
1√
2
(|0⟩|1⟩ − |1⟩|0⟩) (6)

and Bell inequalities (violated by these states).
Ekert showed that if put together, they become use-

ful producing private cryptographic key. In this way
he discovered entanglement based quantum key distri-
bution as opposed to the original BB84 scheme which
uses directly quantum communication. The essence of
the protocol is as follows: Alice and Bob can obtain
from a source the EPR pairs. Measuring them in ba-
sis {|0⟩, |1⟩}, Alice and Bob obtain string of perfectly
(anti)correlated bits, i.e. the key. To verify whether it is
secure, they check Bell inequalities on selected portion of
pairs. Roughly speaking, if Eve knew the values that Al-
ice and Bob obtain in measurement, this would mean that
the values exist before the measurement, hence Bell’s in-
equalities would not be violated. Therefore, if Bell in-
equalities are violated, the values do not exist before Al-
ice and Bob measurement, so it looks like nobody can
know them.18 First implementations of Ekert’s cryptog-
raphy protocol has been performed using polarization-
entangled photons from spontaneous parametric down-
conversion (Naik et al., 2000) and entangled photons in
energy-time (Tittel et al., 2000).

After Ekert’s idea, the research in quantum cryptog-
raphy could have taken two paths. One was to treat
violation of Bell inequality merely as a confirmation that
Alice and Bob share good EPR states, as put forward in

17 This state is also referred to as singlet, EPR state or EPR pair. If
not explicitly stated, we will further use these names to denote
any maximally entangled state, also in higher dimensions, see
section VI.B.3.

18 In fact, the argument is more subtle. This is because in principle
the values which did not preexist could come to exist in a way
that is immediately available to a third party - Eve, i.e. the val-
ues that were not known to anybody could happen to be known
to everybody when they come to exist. To cope with this problem
Ekert has used the fact that singlet state can not be correlated
with any environment. Recently it turned out that one can argue
basing solely on Bell inequalities by means of so called monogamy
of nonlocal correlations (Acin et al., 2006a; Barrett et al., 2005,
2006; Masanes and Winter, 2006).

(Bennett et al., 1992), because this is sufficient for pri-
vacy: if Alice and Bob have true EPR state, then no-
body can know results of their measurements. This is
what actually happened, for a long time only this ap-
proach was developed. In this case the eavesdropper Eve
obeys the rules of quantum mechanics. We discuss it in
Sec. XIX. The second path was to treat EPR state as
the source of strange correlations that violate Bell in-
equality (see Sec. IV). This leads to new definition of
security: against eavesdropper who do not have to obey
the rules of quantum mechanics, but just the no-faster-
then-light communication principle. The main task of
this approach, which is an unconditionally secure proto-
col has been achieved only recently (Barrett et al., 2005;
Masanes et al., 2006; Masanes and Winter, 2006).

B. Quantum dense coding

In quantum communication there holds a reasonable
bound on the possible miracles stemming from quan-
tum formalism. This is the Holevo bound (Holevo, 1973).
Roughly speaking it states, that one qubit can carry at
most only one bit of classical information. In 1992, Ben-
nett and Wiesner have discovered a fundamental prim-
itive, called dense coding, which can come around the
Holevo bound. Dense coding allows to communicate two
classical bits by sending one a priori entangled qubit.

Suppose Alice wants to send one of four messages to
Bob, and can send only one qubit. To communicate two
bits sending one qubit she needs to send a qubit in one of
22 = 4 states. Moreover the states need to be mutually
orthogonal, as otherwise Bob will have problems with
discriminating them, and hence the optimal bound 2 will
not be reached. But there are only two orthogonal states
of one qubit. Can entanglement help here? Let Alice
and Bob instead share a EPR state. Now the clever idea
comes: it is not that qubit which is sent that should be
in four orthogonal state, but the pair of entangled qubits
together. Let us check how it works. Suppose Alice and
Bob share a singlet state (6). If Alice wants to tell Bob
one of the four events k ∈ {0, 1, 2, 3} she rotates her qubit
(entangled with Bob) with a corresponding transforma-
tion σk:

σ0 =

[

1 0
0 1

]

, σ1 =

[

0 1
1 0

]

,

σ2 =

[

1 0
0 −1

]

, −iσ3 =

[

0 −1
1 0

]

. (7)

The singlet state (6) rotated by σk on Alice’s qubit be-
comes the corresponding |ψk⟩ Bell state19. Hence |ψk⟩ =
[σk]A ⊗ IB |ψ0⟩ is orthogonal to |ψk′⟩ = [σk′ ]A ⊗ IB|ψ0⟩

19 In correspondence with Bell basis defined in Eq. (3) we have
here |ψ0⟩ = |ψ−⟩, |ψ1⟩ = |φ−⟩, |ψ2⟩ = |ψ+⟩, |ψ3⟩ = |φ+⟩.

If not,  Bell’s inequality is broken, and 
the shared measured data can be used 
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for k ̸= k′ because Bell states are mutually orthogonal.
Now if Bob gets Alice’s half of the entangled state, after
rotation he can discriminate between 4 Bell states, and
infer k. In this way Alice sending one qubit has given
Bob log 4 = 2 bits of information.

Why does not this contradict the Holevo bound? This
is because the communicated qubit was a priori entan-
gled with Bob’s qubit. This case is not covered by Holevo
bound, leaving place for this strange phenomenon. Note
also that as a whole, two qubits have been sent: one
was needed to share the EPR state. One can also in-
terpret this in the following way: sending first half of
singlet state (say it is during the night, when the channel
is cheaper) corresponds to sending one bit of potential
communication. It is thus just as creating the possibility
of communicating 1 bit in future: at this time Alice may
not know what she will say to Bob in the future. During
day, she knows what to say, but can send only one qubit
(the channel is expensive). That is, she sent only one bit
of actual communication. However sending the second
half of singlet as in dense coding protocol she uses both
bits: the actual one and potential one, to communicate
in total 2 classical bits. Such an explanation assumes
that Alice and Bob have a good quantum memory for
storing EPR states, which is still out of reach of current
technology. In the original dense coding protocol, Al-
ice and Bob share pure maximally entangled state. The
possibility of dense coding based on partially entangled
pure and mixed states in multiparty settings were con-
sidered in (Barenco and Ekert, 1995; Bose et al., 2000;
Bruß et al., 2005; Hausladen et al., 1996; Mozes et al.,
2005; Ziman and Buzek, 2003) (see Sec. XIV.F. The
first experimental implementation of quantum dense cod-
ing was performed in Innsbruck (Mattle et al., 1996a),
using as a source of polarization-entangled photons (see
further experiments with using nuclear magnetic reso-
nance (Fang et al., 1999), two-mode squeezed vacuum
state (Mizuno et al., 2005) and controlled dense cod-
ing with EPR state for continuous variable (Jietai et al.,
2003)).

C. Quantum teleportation

Suppose Alice wants to communicate to Bob an un-
known quantum bit. They have at disposal only a clas-
sical telephone, and one pair of entangled qubits. One
way for Alice would be to measure the qubit, guess the
state based on outcomes of measurement and describe it
to Bob via telephone. However, in this way, the state
will be transferred with very poor fidelity. In general an
unknown qubit can not be described by classical means,
as it would become cloneable, which would violate the
main principle of quantum information theory: a qubit
in an unknown quantum state cannot be cloned (Dieks,
1982; Wootters and Zurek, 1982).

However, Alice can send the qubit to Bob at the price
of simultaneously erasing it at her site. This is the

essence of teleportation: a quantum state is transferred
from one place to another: not copied to other place, but
moved to that place. But how to perform this with a pair
of maximally entangled qubits? Bennett, Brassard, Cre-
peau Jozsa, Peres and Wootters have found the answer
to this question in 1993 (Bennett et al., 1993).

To perform teleportation, Alice needs to measure her
qubit and part of a maximally entangled state. Interest-
ingly, this measurement is itself entangling: it is projec-
tion onto the basis of four Bell states (3). Let us follow
the situation in which she wants to communicate a qubit
in state |q⟩ = a|0⟩+b|1⟩ on system A with use of a singlet
state residing on her system A′ and Bob’s system B. The
total initial state which is

|ψAA′B⟩ = |q⟩A ⊗ 1√
2
[|0⟩|0⟩ + |1⟩|1⟩]A′B (8)

can be written using the Bell basis (3) on the system AA′

in the following way:

|ψAA′B⟩ =
1

2
[|φ+⟩AA′(a|0⟩B + b|1⟩B)

+|φ−⟩AA′(a|0⟩B − b|1⟩B)

+|ψ+⟩AA′(a|1⟩B + b|0⟩B)

+|ψ−⟩AA′(a|1⟩B − b|0⟩B)]. (9)

Now when Alice measures her systems AA′ in this basis,
she induces equiprobably the four corresponding states
on Bob’s system. The resulting states on system B are
very similar to the state of qubit |q⟩ which Alice wanted
to send him. They however admix to the initial state
of system B. Thus Bob does not get any information
instantaneously. However the output structure revealed
in the above equation can be used: now Alice tells to Bob
her result via telephone. Accordingly to those two bits of
information (which of Bell states occurred on AA′) Bob
rotates his qubit by one of the four Pauli transformations
(7). This is almost the end. After each rotation, Bob gets
|q⟩ at his site. At the same time, Alice has just one of
the Bell states: the systems A and A′ becomes entangled
after measurement, and no information about the state
|q⟩ is left with her. That is, the no cloning principle is
observed, while the state |q⟩ was transferred to Bob.

There is a much simpler way to send qubit to Bob:
Alice could just send it directly. Then however, she has
to use a quantum channel, just at the time she wants to
transmit the qubit. With teleportation, she might have
send half of EPR pair at any earlier time, so that only
classical communication is needed later.

This is how quantum teleportation works in theory.
This idea has been developed also for other communi-
cation scenarios (see (Dür and Cirac, 2000c)). It be-
came immediately an essential ingredient of many quan-
tum communication protocols. After pioneering exper-
iments (Boschi et al., 1998; Bouwmeester et al., 1997;
Furusawa et al., 1998), there were beautiful experiments
performing teleportation in different scenarios during last
decade (see e.g. (Barrett et al., 2004; Marcikic et al.,
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of maximally entangled qubits? Bennett, Brassard, Cre-
peau Jozsa, Peres and Wootters have found the answer
to this question in 1993 (Bennett et al., 1993).

To perform teleportation, Alice needs to measure her
qubit and part of a maximally entangled state. Interest-
ingly, this measurement is itself entangling: it is projec-
tion onto the basis of four Bell states (3). Let us follow
the situation in which she wants to communicate a qubit
in state |q⟩ = a|0⟩+b|1⟩ on system A with use of a singlet
state residing on her system A′ and Bob’s system B. The
total initial state which is

|ψAA′B⟩ = |q⟩A ⊗ 1√
2
[|0⟩|0⟩ + |1⟩|1⟩]A′B (8)

can be written using the Bell basis (3) on the system AA′

in the following way:

|ψAA′B⟩ =
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+|ψ−⟩AA′(a|1⟩B − b|0⟩B)]. (9)

Now when Alice measures her systems AA′ in this basis,
she induces equiprobably the four corresponding states
on Bob’s system. The resulting states on system B are
very similar to the state of qubit |q⟩ which Alice wanted
to send him. They however admix to the initial state
of system B. Thus Bob does not get any information
instantaneously. However the output structure revealed
in the above equation can be used: now Alice tells to Bob
her result via telephone. Accordingly to those two bits of
information (which of Bell states occurred on AA′) Bob
rotates his qubit by one of the four Pauli transformations
(7). This is almost the end. After each rotation, Bob gets
|q⟩ at his site. At the same time, Alice has just one of
the Bell states: the systems A and A′ becomes entangled
after measurement, and no information about the state
|q⟩ is left with her. That is, the no cloning principle is
observed, while the state |q⟩ was transferred to Bob.

There is a much simpler way to send qubit to Bob:
Alice could just send it directly. Then however, she has
to use a quantum channel, just at the time she wants to
transmit the qubit. With teleportation, she might have
send half of EPR pair at any earlier time, so that only
classical communication is needed later.

This is how quantum teleportation works in theory.
This idea has been developed also for other communi-
cation scenarios (see (Dür and Cirac, 2000c)). It be-
came immediately an essential ingredient of many quan-
tum communication protocols. After pioneering exper-
iments (Boschi et al., 1998; Bouwmeester et al., 1997;
Furusawa et al., 1998), there were beautiful experiments
performing teleportation in different scenarios during last
decade (see e.g. (Barrett et al., 2004; Marcikic et al.,
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infer k. In this way Alice sending one qubit has given
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Why does not this contradict the Holevo bound? This
is because the communicated qubit was a priori entan-
gled with Bob’s qubit. This case is not covered by Holevo
bound, leaving place for this strange phenomenon. Note
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was needed to share the EPR state. One can also in-
terpret this in the following way: sending first half of
singlet state (say it is during the night, when the channel
is cheaper) corresponds to sending one bit of potential
communication. It is thus just as creating the possibility
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not know what she will say to Bob in the future. During
day, she knows what to say, but can send only one qubit
(the channel is expensive). That is, she sent only one bit
of actual communication. However sending the second
half of singlet as in dense coding protocol she uses both
bits: the actual one and potential one, to communicate
in total 2 classical bits. Such an explanation assumes
that Alice and Bob have a good quantum memory for
storing EPR states, which is still out of reach of current
technology. In the original dense coding protocol, Al-
ice and Bob share pure maximally entangled state. The
possibility of dense coding based on partially entangled
pure and mixed states in multiparty settings were con-
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nance (Fang et al., 1999), two-mode squeezed vacuum
state (Mizuno et al., 2005) and controlled dense cod-
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C. Quantum teleportation
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way for Alice would be to measure the qubit, guess the
state based on outcomes of measurement and describe it
to Bob via telephone. However, in this way, the state
will be transferred with very poor fidelity. In general an
unknown qubit can not be described by classical means,
as it would become cloneable, which would violate the
main principle of quantum information theory: a qubit
in an unknown quantum state cannot be cloned (Dieks,
1982; Wootters and Zurek, 1982).

However, Alice can send the qubit to Bob at the price
of simultaneously erasing it at her site. This is the
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she induces equiprobably the four corresponding states
on Bob’s system. The resulting states on system B are
very similar to the state of qubit |q⟩ which Alice wanted
to send him. They however admix to the initial state
of system B. Thus Bob does not get any information
instantaneously. However the output structure revealed
in the above equation can be used: now Alice tells to Bob
her result via telephone. Accordingly to those two bits of
information (which of Bell states occurred on AA′) Bob
rotates his qubit by one of the four Pauli transformations
(7). This is almost the end. After each rotation, Bob gets
|q⟩ at his site. At the same time, Alice has just one of
the Bell states: the systems A and A′ becomes entangled
after measurement, and no information about the state
|q⟩ is left with her. That is, the no cloning principle is
observed, while the state |q⟩ was transferred to Bob.

There is a much simpler way to send qubit to Bob:
Alice could just send it directly. Then however, she has
to use a quantum channel, just at the time she wants to
transmit the qubit. With teleportation, she might have
send half of EPR pair at any earlier time, so that only
classical communication is needed later.

This is how quantum teleportation works in theory.
This idea has been developed also for other communi-
cation scenarios (see (Dür and Cirac, 2000c)). It be-
came immediately an essential ingredient of many quan-
tum communication protocols. After pioneering exper-
iments (Boschi et al., 1998; Bouwmeester et al., 1997;
Furusawa et al., 1998), there were beautiful experiments
performing teleportation in different scenarios during last
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day, she knows what to say, but can send only one qubit
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will be transferred with very poor fidelity. In general an
unknown qubit can not be described by classical means,
as it would become cloneable, which would violate the
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1982; Wootters and Zurek, 1982).
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of simultaneously erasing it at her site. This is the
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on Bob’s system. The resulting states on system B are
very similar to the state of qubit |q⟩ which Alice wanted
to send him. They however admix to the initial state
of system B. Thus Bob does not get any information
instantaneously. However the output structure revealed
in the above equation can be used: now Alice tells to Bob
her result via telephone. Accordingly to those two bits of
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(7). This is almost the end. After each rotation, Bob gets
|q⟩ at his site. At the same time, Alice has just one of
the Bell states: the systems A and A′ becomes entangled
after measurement, and no information about the state
|q⟩ is left with her. That is, the no cloning principle is
observed, while the state |q⟩ was transferred to Bob.

There is a much simpler way to send qubit to Bob:
Alice could just send it directly. Then however, she has
to use a quantum channel, just at the time she wants to
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send half of EPR pair at any earlier time, so that only
classical communication is needed later.
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qubit and part of a maximally entangled state. Interest-
ingly, this measurement is itself entangling: it is projec-
tion onto the basis of four Bell states (3). Let us follow
the situation in which she wants to communicate a qubit
in state |q⟩ = a|0⟩+b|1⟩ on system A with use of a singlet
state residing on her system A′ and Bob’s system B. The
total initial state which is

|ψAA′B⟩ = |q⟩A ⊗ 1√
2
[|0⟩|0⟩ + |1⟩|1⟩]A′B (8)

can be written using the Bell basis (3) on the system AA′

in the following way:

|ψAA′B⟩ =
1

2
[|φ+⟩AA′(a|0⟩B + b|1⟩B)

+|φ−⟩AA′(a|0⟩B − b|1⟩B)

+|ψ+⟩AA′(a|1⟩B + b|0⟩B)

+|ψ−⟩AA′(a|1⟩B − b|0⟩B)]. (9)

Now when Alice measures her systems AA′ in this basis,
she induces equiprobably the four corresponding states
on Bob’s system. The resulting states on system B are
very similar to the state of qubit |q⟩ which Alice wanted
to send him. They however admix to the initial state
of system B. Thus Bob does not get any information
instantaneously. However the output structure revealed
in the above equation can be used: now Alice tells to Bob
her result via telephone. Accordingly to those two bits of
information (which of Bell states occurred on AA′) Bob
rotates his qubit by one of the four Pauli transformations
(7). This is almost the end. After each rotation, Bob gets
|q⟩ at his site. At the same time, Alice has just one of
the Bell states: the systems A and A′ becomes entangled
after measurement, and no information about the state
|q⟩ is left with her. That is, the no cloning principle is
observed, while the state |q⟩ was transferred to Bob.

There is a much simpler way to send qubit to Bob:
Alice could just send it directly. Then however, she has
to use a quantum channel, just at the time she wants to
transmit the qubit. With teleportation, she might have
send half of EPR pair at any earlier time, so that only
classical communication is needed later.

This is how quantum teleportation works in theory.
This idea has been developed also for other communi-
cation scenarios (see (Dür and Cirac, 2000c)). It be-
came immediately an essential ingredient of many quan-
tum communication protocols. After pioneering exper-
iments (Boschi et al., 1998; Bouwmeester et al., 1997;
Furusawa et al., 1998), there were beautiful experiments
performing teleportation in different scenarios during last
decade (see e.g. (Barrett et al., 2004; Marcikic et al.,



Monogamy of entanglement

Entanglement in long distance

If two qubits A and B are maximally correlated, 
they cannot be correlated at all with third qubit C



China’s satellite

Micius (墨子)

achieved entanglement 
at distance 1,203km
(2017)

- quantum teleportation
- quantum key distribution
- global network (future)



Thank you!


